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A posteriori estimation of stochastic model
for multi-sensor integrated inertial
kinematic positioning and navigation on
basis of variance component estimation
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Abstract

Improving a priori stochastic models of the process and measurement noise vectors in Kalman Filer (KF) has always
been a challenge. As one preferable technique to address this challenge, the variance component estimation (VCE)
applied on the Kalman Filter’s process and measurement noise covariance matrix (Q & R) has been proved in plenty
of applications. Unsurprisingly, VCE was expected to re-establish the stochastic model about the random errors in
the IMU’s measurements in a multisensor integrated positioning and navigation system applying Kalman Filter.
However, in the conventional error states-based GPS aided inertial navigation system (GPS/INS), the stochastic
model tuning is difficult for the IMU’s measurements due to the amalgamation of the observables from inertial
sensor and other aiding sensors. This paper proposes a generic method for the stochastic model tuning about the
random errors in IMU measurements together with other sensors. The core of this novel approach is based on an
innovative multisensor integration strategy which deploys upon the vehicle’s generic kinematic model and takes
the IMU’s output as raw measurements in Kalman Filter (IMU/GNSS Kalman Filter). As a result, the statistical
orthogonality between random error vectors of any two sensors enables the separate but parallel statistics
collection of each individual random error source. Given these independent statistics corresponding to each error
source, the VCE technique iteratively tunes all stochastic model of the process and measurement noise vectors. The
success of the VCE algorithm is shown through a real dataset involving GPS and inertial sensors.

Keywords: Variance component estimation, Kalman filter, GPS/INS, IMU/GNSS KF, Stochastic model
Introduction
The solution optimality of the Kalman filter (KF) relies
on the appropriate stochastic model, which is com-
monly, also here specifically, about the variance-
covariance (VC) matrices Q and R associated with the
process and measurement noise vectors. The determin-
ation of these two covariance matrices in Kalman filter
has been actively pursued by plenty of researchers since
the advent of Kalman filter. Despite of the variation in
numerous application-based algorithms, their method-
ologies can be roughly classified into two categories: VC
matrix estimation (VCME) and variance component
(scale factor) estimation (VCE). Mehra (1970, 1972)
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published his pioneering VCME work on the estimation
of Q and R based on the system innovations in steady-
state KF. Four relevant methods briefed in his work are:
Bayesian, maximum likelihood, correlation and covari-
ance matching. Mehra’s work has still been of important
directive significance to various recent researches on
VCME (Dunık and Šimandl 2008; Bavdekar, et al. 2011;
Bulut et al. 2011; Matisko and Havlena 2013; etc.).
Alternatively, scale factor based estimation strategy is

more attractive because of its computation effectiveness
and reliable accuracy in the case where the matrix skele-
tons for Q and R are known. This type of the VCE
methods in Kalman filter (VCE-KF) originated from the
variance and covariance estimation in Least Squares
(VCE-LS) (Helmert 1907). Along with the essential the-
oretical development, for instance, in (Förstner 1979;
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Grafarend, et al. 1980; Koch 1986; Ou 1989; Xu, et al.
2006; Amiri-Simkooei 2007; Teunissen and Amiri-
Simkooei 2008; etc.), VCE-LS has been extensively used
in practice (Sieg and Hirsch 2000; Wang and Rizos 2002;
Tiberius and Kenselaar 2003; Rietdorf 2004; Tesmer
2004; Zhou, et al. 2006; Bähr et al. 2007; Gopaul, et al.
2010; Xiao and Wujiao 2014; etc.). In this category, a
practical VCE algorithm was proposed based on follow-
ing two discoveries (Wang 1997):

� Kalman filter is constructed epoch wise by applying
the least squares principle, which utilizes all of the
random information as three groups of statistically
independent measurements: the predicted state
vector as a group of pseudo-measurements, the zero
mean process noise vector also as a group of
pseudo-measurements, and the raw measurement
vector, whose residual or correction vectors can
directly be calculated as the projection of the system
innovation vector.

� The redundancy distribution associated with the
above mentioned three groups of measurements,
and the redundant index for each of the individual
independent measurements can be calculated epoch
wise after the reliability theory transplanted from
Least Squares into Kalman filter.

Given the redundancy contribution indexes and re-
siduals for the individual variance components, the
simplified VCE algorithm has accordingly been de-
veloped (Förstner 1979; Wang 1997; Wang 2009;
etc.). For more details on its practical applications,
one can refer to (Wang, et al. 2009; Gopaul, et al.
2010; Wang, et al. 2010; etc.).
However, in a traditional multisensor-aided inertial

navigation system based on the error-state Kalman filter
(so-called indirect Kalman filter), the variance compo-
nent estimation technique depending on the measure-
ment residuals is not applicable for individual sensor’s
stochastic model tuning because the error measure-
ments involve two sensors and their measurement resid-
uals cannot be used to construct the stochastic model
for individual sensor. This paper addresses the above-
mentioned problem in the error-state-based INS system
by taking the advantages of the novel multisensor inte-
gration strategy developed in (Qian et al. 2013, 2015;
Wang et al. 2014) and succeeds in the stochastic model
tuning for noise vectors, especially the posteriori sto-
chastic model for the measurements from an IMU. The
new integration strategy is designed to take a 3D kine-
matic trajectory model as the system model and there-
fore, allow applying the raw measurements from all of
the sensors, inclusive of the IMUs, directly in measure-
ment updates.
This paper is divided into six sections. This intro-
duction is followed by Section VCE using redundancy
contribution, which reviews variance component
estimation using redundancy contribution in Least
Square and Kalman Filter. Then, Section Multi-sensor
integration for kinematic navigation and positioning
using IMU/GNSS KF describes the direct Kalman fil-
ter used in full tightly-coupled multisensor integrated
kinematic positioning and navigation. Section VCE
realization under the novel multisensor integration
strategy details the implementation of the VCE algo-
rithm with certain discussions. The results from real
road test data are provided to show the success of
the proposed VCE algorithm in Section Road test re-
sults. Section Conclusion and future work concludes
the paper.
Methods
The rigorous variance-covariance component estimation
in Least Squares proposed by Helmert (1907) was sim-
plified to a VCE algorithm based on measurement re-
dundant contribution (Förstner 1979), which becomes
popular in real applications (Cui et al. 2001; Bähr et al.
2007; etc.). Furthermore, Wang (1997) transplanted it
into Kalman filter through an alternative derivation of
the Kalman filtering algorithm by applying three groups
of the independent random information: the purely-
predicted state vector, the process noise vector and the
real measurement vector. This derivation can project the
system innovation vector into the residuals associated
with these above used three groups of the measurements
and also makes possible the calculation of their redun-
dancy contribution. So, the VCE process as in (Förstner
1979) can be realized in Kalman filter. For the needs of
further development, the relevant details will briefly be
reviewed below.
VCE using redundancy contribution in LS
Let least square system is represented by

Lþ v ¼ Bδx̂ þ F x 0ð Þ
� �

ð2:1Þ

where are
L the measurement vector
v the measurement residual vector
B the design matrix
F the nonlinear observation equations
x(0) the approximate of the parameter vector x
δx̂ the correction vector for x(0).
Assume that L consists of m statistically independent

measurement types, (2.1) can be partitioned into
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L1
⋮
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⋮
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2
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3
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3
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⋮
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2
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3
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⋮
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⋮
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2
66664

3
77775 ð2:2Þ

where are
Li ni × 1 vector of the i-th type of the measurements
vi the residual vector of Li
Bi the design matrix associated with Li
The measurement weight matrix is also grouped into

P ¼ diag P1 ⋯ Pi ⋯ Pmð Þ ð2:3Þ

with its corresponding covariance matrix

D ¼ diag D1 ⋯ Di ⋯ Dmð Þ
¼ diag σ2

01P1
−1⋯σ20iPi

−1⋯σ2
0mPm

−1
� � ð2:4Þ

where σ20i 1; …; mð Þ is the i-th variance component
(variance factor) of the unit weight to be estimated for
the i-th group of the measurements (Cui, et al. 2001).
Under the assumption of vieN 0; Dvið Þ, the expectation

of the weighted residual sum of squares is (Cui, et al.
2001):

E vTi Pivi
� � ¼ ni−2tr N−1Ni

� �þ tr N−1Ni
� �2� �

σ20i

þ
Xm
j¼1;j≠i

tr N−1NiN
−1Nj

� �
σ20j

n o
ð2:5Þ

with N = BTPB, and Ni ¼ BT
i PiBi (i = 1, 2, …, m). The

rigorous solution for σ20i 1; …; mð Þ can be delivered by
solving the m dimensional equation system. There have
been multiple simplified algorithms, of which one is

E vTi Pivi
� � ¼ σ2

0i ni−tr N−1Ni
� �� � ð2:6Þ

by assuming that σ201 ¼ σ202 ¼ ⋯ ¼ σ20m ¼ σ20i in (2.5).
Furthermore, provided that ni − tr(N− 1Ni) = ri, the
practical estimation of σ20i 1; …; mð Þ is reduced to
(Förstner 1979)

σ̂ 2
0i ¼ vTi Pivi=ri ð2:7Þ

where ri is the total redundancy contribution that re-
flects the extent of the influence of Li on the parameter
estimation. The bigger ri is, the less Li affects the param-
eter estimation. The number of the measurements in a
group can be one or more. With a group of independent
measurements, the redundant index of each measure-
ment satisfies 0 < ri < 1. When ri = 1, the measurement is
completely redundant. It becomes a high leverage meas-
urement in case ri tends to zero.
The alternative derivation of Kalman filter
Let the linear or linearized system described by KF at
time tk be

xk ¼ Φkxk−1 þ Λkwk system modelð Þ ð2:8Þ
zk ¼ Hkxk þ εk measurement modelð Þ ð2:9Þ

where is
xk the nx × 1 state vector
wk the nw × 1 process noise vector
Λk the coefficient matrix of wk

zk the nz × 1 measurement vector
εk the measurement noise vector
Φk the state transition matrix
Hk the design matrix
with wk ~N(0,Qw), εk ~N(0, Rk), where wk and εk are un-
correlated with each other and themselves from epoch
to epoch.
By considering three independent groups of the mea-

surements and pseudo-measurements at an arbitrary
epoch k (Wang 1997):

(1)the raw measurement vector lz = zk with its variance
matrix Dlz ¼ Rk ,

(2)the zero mean process noise vector wk as a pseudo-
measurement vector lw =wk with its variance matrix
Dlw ¼ Qk ,

(3)the predicted state vector xk/k − 1 from the
previous epoch as another pseudo-measurement
vector lw = xk/k − 1 =Φkxk − 1 with its variance
matrix Dlx ¼ ΦkDxx−1Φ

T
k , where Dxx−1 is the variance

matrix of xk − 1,

a measurement equation system can be constructed for
Kalman filter algorithm at epoch k as follow:

vz
vw
vx

2
4

3
5 ¼

Hk O
O I
I −Λk

2
4

3
5 x̂

ŵ

� �
−

lz
lw
lx

2
4

3
5 ð2:10Þ

to which the Least Squares Principle can be applied to
derive the identical solution for Kalman filter (Wang
1997; Caspary and Wang 1998).
One of the significant contributions made by this alter-

nate derivation of KF was about to handle the process
noise vector separately, which has made possible the
simultaneous estimation of the variance components as-
sociated with the process noise vector wk and the meas-
urement noise vector εk.

Global VCE for Q and R in KF using redundancy
contribution
Because of the solution equivalence between LS and KF
as summarized in 2.2, we are intuitively inspired to
realize the most popular simplified VCE technique
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(Forstner’s method) in our novel multisensor integrated
kinematic positioning and navigation (Qian, et al. 2013,
2015; Wang et al. 2014). Wang (1997) proved that the
measurement residual vectors for three independent
measurement groups at epoch k as in (2.10) can be com-
puted based on the same innovation vector as follow:

vz ¼ I−HkKð Þ zk−Hkxk=k−1
� �

vw ¼ QkΛ
T
k D

−1
xk=k−1

K zk−Hkxk=k−1
� �

vx ¼ ΦkDk−1Φ
T
k D

−1
xk=k−1

K zk−Hkxk=k−1
� � ð2:11Þ

where K is the Kalman gain matrix at epoch k, the
covariance matrix of the predicted state xk/k − 1 is Dxk=k−1 ¼
ΦkDxx−1Φ

T
k þ ΛkQkΛ

T
k , and the innovation vector d = zk −

Hkxk/k − 1.
Consequently, three residual vectors (vz, vw, vx) for

three measurement vectors (lz, lw, lx) are actually corre-
lated with each other through the same innovation vec-
tor. In addition, the corresponding redundancy indices
for each measurement group are (Wang 1997):

rz ¼ tr I−HkKð Þ
rw ¼ tr QkΛ

T
k H

T
k D

−1
d HkΛk

� �
rx ¼ tr ΦkDxk−1Φ

T
k H

T
k D

−1
d HK

� � ð2:12Þ

wherein the total system redundancy nz = rz + rw + rx,
and the covariance matrix of the innovation vector is de-
noted by Dd ¼ Rk þ HkDxk=k−1H

T
k . Thus, for an arbitrary

epoch k, the variance factors of the three measurement
groups defined in (2.10) can be estimated as follow:

σ20j kð Þ ¼ vTj D
−1
lj vj=rj j ¼ z;w; xð Þ ð2:13Þ

As for a global variance component estimate over a spe-
cific or the whole time duration, a simple accumulation
can obtain a reliable estimate due to the cross-epoch-
orthogonal properties of the measurement residuals
(Wang 1997). For example, the global variance compo-
nent estimate up to epoch k is:

σ20j kj1…kð Þ ¼

Xk
i¼1

vTji D
−1
lj vji

Xk
i¼1

rji

j ¼ z;w; xð Þ ð2:14Þ

Commonly, the components in wk and εk are modeled
as uncorrelated so that Qk and Rk become diagonal. As a
result, the redundant index for each independent com-
ponent in either wk or εk is given by
rizz ¼ 1− HkKð Þiz iz ð2:15Þ

riww ¼ QkΛ
T
k H

T
k D

−1
d HkΛk

� �
iwiw

ð2:16Þ
Accordingly, the individual variance component in
vector wk or εk can be estimated by analogy with (2.13)
and (2.14).

Discussion
In traditional error-state based inertial navigation system
(e.g., Rogers 2003; Bekir 2007), the variance component
estimation for the IMU measurements is difficult be-
cause the error measurement vector blends the errors from
an inertial sensor and other aiding sensors. However, this
dilemma is addressed through a novel multisensor integra-
tion strategy (Wang 1997; Wang and Sternberg 2000; Qian,
et al. 2013, 2015; Wang, et al. 2014), whose major features
in comparison with the transnational aided inertial naviga-
tion are summarized below (Fig. 1):

1) Deployment of the vehicle’s kinematic model for the
kinematic states, i.e., the velocity, acceleration,
attitude and angular rate vectors as the core of the
system model in Kalman filter,

2) Utilization of direct Kalman filter instead of indirect
Kalman filter,

3) Application of all of the multisensor measurements
through the measurement update in Kalman filter,
especially the use of the IMU measurements instead
of their use only through the free inertial navigation
calculation between two aiding epochs in the
traditional inertial navigation.

Thus, the novel multisensor integration strategy allows
for equal treatment of all the sensors no matter which
sensor is used as an aiding sensor. The structure of
Kalman filter, e.g., for measurement models of IMU and
GNSS receivers, is briefly introduced below.

State vector
Here, the state vector x, specifically for IMU/GNSS KF,
may consist of 27 components:

rT vbnb
� �T

abnb
� �T

θT ωb
nb

� �T
bTg bTa sTg sTa

h iT
ð3:1Þ

with
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wherein are



Fig. 1 Integration mechanism comparison between the traditional and novel integration strategies (Qian, et al. 2015)
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r the position vector in the navigation frame
vbnb; abnb; ωb

nb the velocity, acceleration and angular
rate vector in body frame
θ ¼ pγψ½ �T Euler angle vector (pitch, roll, heading)
bg ; ba the gyro and accelerometer’s bias vector
sg ; sa the gyro and accelerometer’s scale factors.

Measurement equations for GNSS observables
Three types of GPS measurements, the double differ-
enced (DD) pseudo-ranges and carrier phases (L1 and
L2), and range rates (Doppler velocity) are used in IMU/
GNSS KF:

∇ΔPRjk
AB tð Þ ¼ ∇ΔρjkAB tð Þ þ εjk∇ΔPAB

tð Þ ð3:2Þ

∇Δϕjk
AB tð Þ ¼ ∇ΔρjkAB tð Þ þ λ1∇ΔN

jk
AB þ εjkAB tð Þ ð3:3Þ

∇ΔDopjkAB tð Þ ¼ ∇ΔρjkAB

•

tð Þ þ εjk∇ΔDopAB tð Þ ð3:4Þ

where ∇Δ is the double differencing operator on GNSS
observables between station A and B for satellite i and j.
For instance, one has

∇ΔρABjk ¼ ρkB tð Þ−ρkA tð Þ� 	
− ρjB tð Þ−ρjA tð Þ
h i

:

Furthermore, the measurement noises of the DD
pseudo-ranges, carrier phases and range rates are de-

noted by εjk∇ΔPAB
, εjk∇ΔϕAB

and εjk∇ΔDopAB . Certainly, the ambi-

guity parameters ∇ΔNjk
AB will also be added to the state
vector in (3.1) before they can be fixed as integer
numbers.

Measurement equation for GPS heading measurement
With the use of low-cost IMUs in multisensor integrated
kinematic positioning and navigation, the extra heading
measurement is always needed in order to supress the
fast heading drift. In the IMU/GNSS KF implemented in
this paper, the vehicle heading measurement is made
available through the short baseline solution between
two GPS rovers on the vehicle’s roof in navigation frame.
The short baseline is achieved through N (N ≥ 5) DD L1
phase measurements with their fixed integer ambiguities.
The DGPS heading measurement is simply modeled as:

lh ¼ αþ vH ð3:5Þ

where are
lh the DGPS heading measurement
α the heading state
εh the heading measurement noise.

Measurement equations for IMU measurements
Without loss of the generality, three cross-orthogonal
gyros in an IMU unit measure the angular rate vector
ωb
ib while three accelerometers simultaneously measure

the specific force vector fbib . A generic assumption about

inertial sensors is that both of ωb
ib and fbib mainly suffer

from the following errors: constant start-off biases, drift-
ing bias residuals, linear scale factors, misalignments of
sensor axes and random withe noise. Accordingly, the



Qian et al. The Journal of Global Positioning Systems  (2016) 14:5 Page 6 of 12
IMU measurements in the being constructed KF are
modelled as follow (Qian, et al. 2013):

ωb
ib−imu ¼ I þ Sg

� �
ωb
nb þ Cb

n ωn
ie þ ωn

en

� �þ bg þ εg ð3:6Þ

fbib−imu ¼ I þ Sað Þabnb þ 2ωb
ie þ ωb

en

� �� vbnb
−Cb

ng
n þ ba þ εa

ð3:7Þ

wherein are
ωn
ie the Earth’s rotation rate in the local ENU navigation

frame
ωn
en the craft rate in the local ENU navigation frame

ωn
nb the rotation rate of IMU body frame with respect to

the local ENU frame
annb the acceleration of IMU body frame with respect to
the local ENU frame
bg the bias vector including start off biases and bias
residuals for gyroscopes
ba the bias vector including start off biases and bias
residuals for accelerometers
Sg the scalar and misalignment error matrix of size 3 × 3
for gyroscopes
Sa the scalar and misalignment error matrix of size 3 × 3
for accelerometers
εg the Gaussian white noise vector for gyroscope mea-
surements, and
εa the Gaussian white noise vector for accelerometer
measurements.
Cb
n Direction cosine matrix that transforms the vector

from navigation frame to IMU body frame.
In (3.6) and (3.7), the mechanical installation errors

(misalignment of sensor axes) are ignored due to their
considerably small influence on the state vector in com-
parison with other major errors in the low-cost IMU
used in our land vehicle system.

VCE realization under the novel multisensor
integration strategy
Variance components for the process noise vector in IMU/
GNSS KF
After the omission of the high order terms in the trajec-
tory model, the discrete system equations are as follows:
r
kþ1 ¼ rk þ Cn

b kð Þ I þ ωb
nb�

� 	þ ω
:b
nb�

� 	
Δt

� �
Δt þ ωb

nb�
� 	

ωb
nb�

� 	Δt2
2

� �

vbnb kð ÞΔt þ
Δt2

2
ab
nb kð Þ þ

Δt3

6
jbnb


 �

vbnb kþ1ð Þ ¼ I3�3−Δt ωb
nb kð Þ�

h i
þ Δt2

2
ωb
nb kð Þ�

h i2� �
vbnb kð Þ

þ ΔtI3�3−Δt2
�
ωb
nb kð Þ �

	h i
abnb kð Þ

þΔt2

2
vbnb kð Þ�
h i

ω
•

nb
b þΔt2

2
jbnb
abnb kþ1ð Þ ¼ I3x3−Δt ωb
nb kð Þ�

h i
þ Δt2

2
ωb
nb kð Þ�

h i2� �
abnb kð Þ

þ Δt2

2
abnb kð Þ�
h i

_ωb
nb þ Δt jbnb

θkþ1 ¼ θk þ ΔtC3�3ω
b
nb kð Þ þ Δt2

2
C3�3 _ω

b
nb

ωnb kþ1ð Þ
b ¼ ωb

nb kð Þ þ _ωb
nb

bg kþ1ð Þ ¼ bg kð Þ þ wbg

ba kþ1ð Þ ¼ ba kð Þ þ wba

sg kþ1ð Þ ¼ sg kð Þ þ wsg

sa kþ1ð Þ ¼ sa kð Þ þ wsa

wherein all of jbnb , _ωb
nb , wbg , wba , wsg and wsa are 3 × 1

process noise vectors. Correspondingly, jbnb and _ωb
nb are jerk

and angular acceleration vector in the vehicle’s body frame.
Herein, all components in the process noise vector are con-
sidered as uncorrelated, i.e., Q is diagonal. So, there are 18
variance factors associated with the process noise vector in
total.

Variance components for the measurement vector in
IMU/GNSS KF
Measurement noise model for GNSS observables
Measurement noise model for the double differenced
GNSS measurements has been studied for years (Collins
and Langley 1999; Wieser et al. 2005; Luo et al. 2009; Wang
et al. 2013; Takasu 2013). The commonly applied approach
is that the measurement variance changes along with the
elevation angle of the satellite.
In this paper, the variance of a single GNSS observation

is modelled as the function of the elevation angle βjA of
the line of sight from station A to satellite j and the a
priori receiver noise σ290∘ at station’s zenith (Takasu 2013):

σ2A;j ¼ σ290∘ 1:0þ 1:0

sin βjA

� �2

2
64

3
75

In addition, the double differenced GNSS observables
with short distance between rover and base station (<10
σ2Δ∇ ¼

σ2A;j þ σ2B;j þ σ2
A;1 þ σ2B;1 σ2

A;j þ σ2
B;j

σ2A;j þ σ2B;j σ2
A;j þ σ2

B;j þ σ2A;2 þ σ2B;2
⋮ ⋮

σ2
A;j þ σ2

B;j σ2A;j þ σ2B;j

2
66664

⋯ σ2A;j þ σ2B;j
⋯ σA;j

2 þσ2
B;j

⋮ ⋮

⋯ σ2A;j þ σ2B;j þ σ2
A;n þ σ2

B;n

3
77775
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Km) are reasonably considered to be atmospherically
error free and have no significant multipath effect. Corres-
pondingly, the covariance of n double-differenced GNSS
observation in the case of short baseline shall be
where A and B are the reference station and the rover sta-
tion, respectively, satellite j is taken as the reference satel-
lite, σ2

A;j and σ2B;j are the variances for the measurements

to the reference satellite j while σ2A;k and σ2B;k (k = 1, …, n;
k ≠ j) are the variances for the measurements to the
individually locked satellites.
As a result, five variance components for three in-

dependent types of the double differenced GNSS ob-
servations and the DGPS heading observation will be
estimated:

σ2GNSS kð Þ ¼ σ2P σ2Dop σ2L1 σ2L2 σ2Heading
h i

where is
σ2P variance component for pseudo-range measurement
at zenith
σ2Dop variance component for Doppler velocity measure-

ment at zenith
σ2L1 variance component for L1 carrier phase measure-
ment at zenith.
σ2L2 variance component for L2 carrier phase measure-
ment at zenith. and
σ2h variance component for DGPS heading measurement.

Measurement noise model for IMU measurements
As introduced in Multi-sensor integration for kinematic
navigation and positioning using IMU/GNSS KF section,
the novel IMU/GNSS integration strategy allows to
apply the IMU measurements directly through KF meas-
urement update. This significant change on multisensor
integration strategy makes possible estimate the variance
components for individual IMU measurements about
their random noises for the very first time.
Practically, the random errors on the measurements

from three gyros and three accelerometers can be con-
sidered statistically independent after ignoring the small
timing error and tiny installation error compared to the
other error sources. Correspondingly, the covariance
matrix for these six independent measurements will be a
6 × 6 diagonal matrix. The variance component vector
for the IMU measurements is estimated as:

σ2IMU kð Þ ¼ σ2g xð Þ σ2g yð Þ σ2g zð Þ σ2a xð Þ σ2a yð Þ σ2a zð Þ
h iT

Implementation discussion
Weakly observable process noise components
It has been found that small redundancy indices may
result in the divergence of the estimates of the
corresponding variance components. In IMU/GNSS KF,
the redundancy contribution indices for the IMU bias
drifts and scale factor drifts are quite small with the test
data acquired by our land vehicle. A similar situation
was given by Wang et al. (2010). In order to avoid a po-
tential divergence, twelve variance components for four
weakly estimable process noise sub vectors: wbg, wba, wsg

and wsa and are fixed in the VCE process.

Iterative VCE process
The proposed iterative VCE process starts from the ini-
tial variance matrices of Q(0) and R(0) associated with the
process and measurement noise vector, respectively. The
successively obtained redundant contribution and the
weighted residual sum of squares for each variance com-
ponent are accumulated epoch wise while the KF runs
forward. In order to achieve a convergent solution, the
variance components estimates after i-th round are
cherry-picked as the initial value for the (i + 1)-th iter-
ation. In this paper’s implementation, the sifting rule is
simply based on the redundancy contribution index (r).
Given small r (<0.1) for the i-th group of the measure-
ments, the corresponding variance component σ2i will
not be applied for the next round. For example, if X axis
gyro’s redundancy contribution index is 0.029 in the
current iteration while its standard deviation is 0.5 deg/
s, the standard deviation will remain to be 0.5 deg/s in
the next iteration (Fig. 2).

Results
Overview
The road test presented in this section, was performed
on April 1, 2012 using the York University Multisensor
Integrated kinematic positioning and navigation System
(YUMIS) developed at the Earth Observation Laboratory
of York University (Qian et al. 2012).
YUMIS system consists of Crossbow IMU440CA

(MEMS) IMU, two NovAtel GPS receivers and a Linux/
RTAI based desktop. The IMU data were collected at
100 Hz and the measurements from two GPS rovers
were acquired at 4Hz. Besides, the third GPS receiver
was set up as a base station near the start point. Figure 3
gives the top view of the land vehicle’s trajectory and the
velocity profile.

VCE results and analysis
The empirical initial variances and their iterative esti-
mates for the measurements and the process noise fac-
tors are plotted in Figs 4, 5, 6, 7, 8, 9 and 10.

The variances with the process noise factors
Figures 4 and 5 show the global VCE estimates of kine-

matic process noise component: jerk vector ( jbnb ) and



Fig. 2 Flow chart of VCE in IMU/GNSS KF
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angular acceleration vector ( _ωb
nb ) in the vehicle’s body

frame. As can be seen, the estimates are convergent at
the 4th iteration.
However, it is noted that the global VCE results for

jerks and angular accelerations achieved from this
dataset around 10 min are definitely not universal to
describe the generic land vehicle’s dynamics because
this specific trajectory was mainly in straight line motion
on the flat road and only experienced three sharp turns.
Therefore, the results based on this specific short trajectory
were used only to demonstrate the success of the proposed
VCE algorithm in the multisensor integrated kinematic po-
sitioning and navigation. And further detailed research will
Fig. 3 Top view of the trajectory and the speed profile
be performed for practical utilization of the proposed VCE
technique.
The variances with the IMU measurements
The initial variances for gyro measurements at the 2nd it-
eration remained at the 1st iteration (Fig. 6) as their re-
dundant indices were relatively small (<0.1) due to the
relative large initial angular acceleration process noise
due to the large initial angular acceleration process noise
(300 0/s2).
Similarly, due to the weak redundancy contribution

(<0.1), the measurement noise estimate for the acceler-
ometer measurement at Y axis remained unchanged
after the 2nd iteration as well (Fig. 7). Therefore, its esti-
mates will be maintained after the 2nd iteration.
The variances with the GPS measurements
Figures 8 and 9 give the iterative VCE estimates for the
GPS measurements.
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Fig. 5 Iterative VCE results for the angular accelerations
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Fig. 6 Iterative VCE results for gyro measurements
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Fig. 8 Iterative VCE results for the DD carrier phase measurements
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In order to avoid the unstable quality of the raw Dop-
pler velocity measurements, the time differenced L1 car-
rier phases were substituted for the double differenced
Doppler measurements in IMU/GNSS KF. Accordingly,
the accuracy of the Doppler velocity measurements is
directly related to L1 carrier phase accuracy. As a result,
the variance component estimation of the Doppler vel-
ocity measurements is skipped because its variance is
easily achieved through error propagation.
The variance DGPS heading measurement noise
The DGPS heading measurements were derived from
two GPS rovers on the vehicle’s roof using their L1 car-
rier phases. In general, the variance estimation for this
heading measurement should be completed in more ro-
bust way directly involving the raw L1 carrier phase ob-
servables. However, in our implementation, the DGPS
heading measurements were only valid when at least 5
L1 carrier phases reached the fixed ambiguities in order
to guarantee a stable heading accuracy. Thus, the vari-
ance of the DGPS heading could be simplified through
1 2 3 4 5 6 7
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0.3

0.4

0.5
Accelerometer measurement noise (m/s3)

X
Y
Z

Fig. 7 Iterative VCE results for the accelerometer measurements
single numerical value. Correspondingly, the single vari-
ance factor is applicable to the DGPS heading measure-
ment in IMU/GNSS KF.
Performance comparison and analysis
Navigation solution comparison
Figures 11 and 12 show the position and attitude differ-
ences between the 1st and 7th VCE iteration as well as
the individual position solution’s ± 3σ bounds (1st in
green and 7th in red).
First, one can conclude that there was no statistical in-

consistency between two solutions because the differ-
enced navigation state vectors were always within their
3σ envelops.
In addition, the consistent smaller (finer) navigation

solution standard deviation in the 7th iteration compared
to the initial navigation solution verifies the positive in-
fluences of VCE effort on IMU/GNSS KF, which is due
to the scaled-down Q and R from the conservatively
large initial values.
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Fig. 9 Iterative VCE results for the DD pseudo-ranges
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Fig. 10 Iterative VCE results for DGPS heading measurement noise
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Analysis of the IMU Measurement residuals
Due to fact that the variance component estimation of
the IMU measurements have been realized practically in
the multisensor integrated navigation system, more
discussions will be performed here. Because the land ve-
hicle’s dynamics is usually exposed in vertical (Z) axial
gyro and the forward (Y) axial accelerometer, the vari-
ance estimates for their observables theoretically cast
more significant influences on their measurement resid-
uals than the ones in the other axes. Figure 12 shows the
normalized histograms of their measurement residuals.
In Fig. 13, the a posteriori residual histograms follow

the normal distribution curve much better than the ones
before the VCE. The abnormal shape of the a priori re-
sidual histogram is resulted from the small redundant
indices corresponding to IMU measurements due to the
large process noises. In return, the corresponding meas-
urement residuals could be very small so that their his-
tograms became unrealistic.
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Fig. 11 Position solution comparison (ENU frame)
Analysis of the GNSS measurement residuals
Figure 14 shows the histograms of the standardized
measurement residuals for SV PRN 9, 15, 18 and 22
with and without the variance component estimation
against the corresponding standardized normal distri-
bution curves. The measurement variances used in
KF computation were used for the standardization of
the measurement residuals. In the optimal filter, these
two variances shall statistically match each other rea-
sonably well.
The a posteriori histograms fit the standardized nor-

mal distribution curves much better than that of a priori
ones individually, which tells that the a posteriori esti-
mated variances for the GNSS measurements were
realistic.
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Fig. 13 Residual histograms for Z gyro and Y accelerometer
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Conclusion and future work
This paper proposed a simplified VCE algorithm for
multisensor integrated kinematic positioning and naviga-
tion. First, the sensor measurements were processed
through a fully tightly-coupled integration strategy
(IMU/GNSS KF). In doing so, the random errors in
IMU measurements could be statistically separated from
the other error sources, which has made possible con-
ducting the variance component estimation for the six
IMU measurements along with the process noise com-
ponents including jerks and changes of angular rates.
Second, the simplified VCE using the redundancy contri-
bution of individual independent measurements or
measurement groups was applied and formulated for the
individual components in the process noise vector and
the measurement vector including the IMU and the
double differenced GNSS measurements. The results
showed that the stochastic models of the process and
measurement noise in IMU/GNSS KF is improved
through VC estimation.

Acknowledgements
The authors would like to acknowledge the Natural Sciences and Engineering
Research Council (NSERC) of Canada for the financial support under its RGPIN
Program.
Authors’ contributions
This paper proposes a generic method for the stochastic model tuning
about the random errors in IMU measurements together with other sensors.
The core of this novel approach is based on authors’ innovative multisensor
integration strategy which deploys upon the vehicle’s generic kinematic
model and takes the IMU’s output as raw measurements in Kalman Filter
(IMU/GNSS Kalman Filter). As a result, the statistical orthogonality between
random error vectors of any two sensors enables the separate but parallel
statistics collection of each individual random error source. Given these
independent statistics corresponding to each error source, the VCE
technique iteratively tunes all stochastic model of the process and
measurement noise vectors. All authors read and approved the final
manuscript.
Competing interests
The authors declare that they have no competing interests.

Received: 2 August 2016 Accepted: 7 September 2016

References
Amiri-Simkooei A (2007) Least-squares variance component estimation:

theory and GPS applications, PhD dissertation, Delft University of
Technology

Bähr H, Altamimi Z, Heck B (2007) Variance component estimation for
combination of terrestrial reference frames, Schriftenreihe des Studiengangs
Geodäsie und Geoinformatik, Universität Karlsruhe, No. 6

Bavdekar VA, Deshpande AP, Patwardhan SC (2011) Identification of process and
measurement noise covariance for state and parameter estimation using
extended Kalman filter. J Process Control 21(4):585–601

Bekir E (2007) Introduction to modern navigation systems, World Scientific
Publishing

Bulut Y, Vines-Cavanaugh D, Bernal D (2011) Process and measurement noise
estimation for Kalman filtering, Structural Dynamics, Vol. 3, pp. 375–386, Springer

Caspary W, Wang J (1998) Redundanz-anteile und Varianzkomponenten im
Kalman Filter. Zeitschrift für Vermessungswesen 123(4):121–128

Collins JP, Langley RB (1999) Possible weighting schemes for GPS carrier phase
observations in the presence of multipath, Final contract report for the US
Army Corps of Engineers Topographic Engineering Center, No. DAAH04-96-
C-0086/TCN, 98151

Cui X-Z et al (2001) Generalized surveying adjustment. Publishing House of
WTUSM, Wuhan

Dunık J, Šimandl M (2008) Estimation of state and measurement noise covariance
matrices by multi-step prediction, Proceedings of the 17th IFAC World
Congress, 2008, pp. 3689–3694

Förstner W (1979) Ein Verfahren zur Schätzung von Varia und Kovarianzkomponenten,
Allgemeine Vermessungs-nachrichten, No. 11–12, 1979, pp. 446–453

Gopaul NS, Wang J, Guo J (2010) On posteriori variance and covariance
components estimation in GPS relative positioning, Proceedings of CPGPS
2010 Navigation and Location Services: Emerging Industry and International
Exchanges, pp. 141–148

Grafarend E, Kleusberg A, Schaffrin B (1980) An introduction to the variance and
covariance component estimation of Helmert type. Zeitschrift für
Vermessungswesen 105(4):161–180

Helmert FR (1907) Die Ausgleichungsrechnung nach der Methode der kleinsten
Quadrate, Zweite Auflage, Teubner, Lepzig

Koch KR (1986) Maximum likelihood estimate of variance components. Bulletin
Geodesique 60:329–338

Luo X, Mayer M, Heck B (2009) Improving the stochastic model of GNSS observations
by means of SNR-based weighting. In: Observing our changing earth. Springer,
Berlin Heidelberg, pp 725–734

Matisko P, Havlena V (2013) Noise covariance estimation for Kalman filter tuning
using Bayesian approach and Monte Carlo. International Journal of Adaptive
Control and Signal Processing 27(11):957–973

Mehra RK (1970) On the identification of variances and adaptive Kalman filtering.
IEEE Trans Autom Control 15(2):175–184

Mehra R (1972) Approaches to adaptive filtering. IEEE Trans Autom Control
17(5):693–698

Ou Z (1989) Estimation of variance and covariance components. Bulletin
Géodésique 63(3):139–148

Qian K, Wang J, Gopaul N, Hu B (2012) Low cost multisensor kinematic positioning
and navigation system with Linux/RTAI. Journal of Sensor and Actuator
Networks 1(3):166–182

Qian K, Wang J, Hu B (2013) Application of vehicle kinematic model on GPS/
MEMS IMU integration, Joint EOGC 2013 & CIG Annual Conference,
June 5–7, 2013, Toronto

Qian K, Wang J, Hu B (2015) Novel integration strategy for GNSS-aided inertial
integrated navigation. Geomatica 69(2):217–230

Rietdorf A (2004) Automatisierte Auswertung und Kalibrierung von scanneden
Messsystemen mit tachy-metrischen Messprinzip, PhD dissertation, Civil
Engineering and Applied Geosciences, Technical University Berlin, 2005



Qian et al. The Journal of Global Positioning Systems  (2016) 14:5 Page 12 of 12
Rogers RM (2003) Applied mathematics in integrated navigation systems,
volume 1, AIAA

Sieg D, Hirsch M (2000) Varianzkomponenten-schätzung in
ingenieurgeodätischen Netzen, AVN, No. 3, pp. 82–90

Takasu T (2013) RTKLIB ver. 2.4.2 Manual. http://www.rtklib.com/
Tesmer V (2004) Das stochastische Modell bei der VLBI-auswertung, PhD

dissertation, No. 573, Reihe C, DGK, Munich
Teunissen PJG, Amiri-Simkooei AR (2008) Least-squares variance component

estimation. J Geod 82(2):65–82
Tiberius C, Kenselaar F (2003) Variance component estimation and precise GPS

positioning: case study. J Surv Eng 129(1):11–18
Wang J (1997) Filtermethoden zur fehlertoleranten kinematischen

Positionsbestimmung, PhD dissertation, Schriftenreihe Studiengang
Vermessungswesen, UniBw München, No. 52

Wang J (2009) Reliability analysis in Kalman filtering. J of Global Positioning
Systems 8(1):101–111

Wang J, Rizos C (2002) Stochastic assessment of GPS carrier phase measurements
for precise static relative positioning, J of Geodesy, vol. 76, no. 2

Wang J, Sternberg H (2000) Model development for kinematic surveying of land
vehicle trajectories (in German), Schriftenreihe Studiengang Vermessungswesen
UinBw München, No. 60–1, ISSN 0179–1009, Germany, pp. 317–331

Wang J, Gopaul SN, Scherzinger B (2009) Simplified algorithms of variance
component estimation for static and kinematic GPS single point positioning.
J of Global Positioning Systems 8(1):43–52

Wang J, Gopaul SN, Jiming G (2010) Adaptive Kalman filtering based on posteriori
variance-covariance components estimation, Proceedings of CPGPS 2010
Navigation and Location Services: Emerging Industry and International
Exchanges, pp. 115–125

Wang L, Feng Y, Wang C (2013) Real-time assessment of GNSS observation noise
with single receivers. Journal of Global Positioning Systems 12(1):73–82

Wang J, Qian K, Hu B (2014) A novel and unique IMU/GNSS Kalman filter,
Keynote Speaker of Session Invited Presentation (J. Wang), CSNC 2014, May
21–23, 2014, Nanjing, China

Wieser A, Gaggl M, Hartinger H (2005) Improved positioning accuracy with high
sensitivity GNSS receivers and SNR aided integrity monitoring of pseudo-
range observations, Proc ION GNSS, pp. 13–16

Xiao G, Wujiao D (2014) 抗差 Helmert 方差分量估计在 GPS/BDS 组合定位中的

应用, 大地测量与地球动力学, 34(1), pp. 173–176
Xu P, Shen Y, Fukuda Y, Liu Y (2006) Variance component estimation in linear

inverse ill-posed models. J of Geodesy 80(2):69–81
Zhou XW, Dai WJ, Zhu JJ, Li ZW, Zou ZR (2006) Helmert variance component

estimation-based Vondrak filter and its application in GPS multipath error
mitigation, VI Hotine-Marussi Symposium on Theoretical and Computational
Geodesy, International Association of Geodesy Symposia, vol. 132, pp. 287–292,
Springer Berlin Heidelberg
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://www.rtklib.com/

	Abstract
	Introduction
	Methods
	VCE using redundancy contribution in LS
	The alternative derivation of Kalman filter
	Global VCE for Q and R in KF using redundancy contribution

	Discussion
	State vector
	Measurement equations for GNSS observables
	Measurement equation for GPS heading measurement
	Measurement equations for IMU measurements

	VCE realization under the novel multisensor integration strategy
	Variance components for the process noise vector in IMU/GNSS KF
	Variance components for the measurement vector in IMU/GNSS KF
	Measurement noise model for GNSS observables
	Measurement noise model for IMU measurements

	Implementation discussion
	Weakly observable process noise components
	Iterative VCE process


	Results
	Overview
	VCE results and analysis
	The variances with the process noise factors
	The variances with the IMU measurements
	The variances with the GPS measurements
	The variance DGPS heading measurement noise

	Performance comparison and analysis
	Navigation solution comparison
	Analysis of the IMU Measurement residuals
	Analysis of the GNSS measurement residuals


	Conclusion and future work
	Acknowledgements
	Authors’ contributions
	Competing interests
	References

