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Abstract

A major error component of Global Positioning System (GPS) is the ionospheric delay. Ionopspheric error can be
reduced by a dual frequency receiver using a linear combination technique that can not be applied with a single
frequecy receiver. However, an accurate ionospheric error modeling for single-frequency receiver is required. Due to
the nonlinearity of the ionospheric error, a highly nonlinear wavelet network (WN) method is proposed in this
paper. The main objective of the paper is to develop a short-term prediction model based on a short dataset.
Therefore, five GPS stations with five days of ionospheric datasets along with time and location were employed to
develop the proposed WN-based ionospheric model. Four days of datasets were employed to develop the model
and one day of dataset was employed to test the prediction accuracy. To validate the WN-based ionospheric
model, a comparison was made between the developed WN-based ionospheric model and the CODE, JPL and IGS
Global Ionospheric Map (GIM) models. It is shown that the Root-Mean-Squared (RMS) errors of the developed WN-
based ionospheric model are 2.51 TECU, 2.75 TECU and 2.50 TECU (Total Electronic Content Unit) with percentage
errors of about 3.4%, 3.8% and 3.4% when compared with the CODE, JPL and IGS GIM models.
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Introduction
Global Positioning System (GPS) satellites broadcast radio
signals in L frequency band and are subject to important
distortions while crossing the ionosphere. The ionospheric
delay is due to the electron concentration in the iono-
sphere layers. It varies during the day with the ionisation
of the particles hit by sun rays. It is a consequence of the
dispersive nature of the medium, which causes sinusoidal
waves with different frequencies to travel at slightly differ-
ent velocities. As a result, the satellite signal is submitted
to a group delay and a phase advance of identical ampli-
tudes. The ionospheric delay I is computed as a function
of the electron content along the signal trajectory through
the ionosphere as follows (Misra and Enge 2006):

I ¼ 40:3 � TEC
f 2

ð1Þ

TEC ¼
Z
S

ne Sð ÞdS ð2Þ

where d is the distance delay (m) in comparison to the
propagation in vacuum, TEC is the electron concentra-
tion determined along the oblique trajectory (total elec-
tron content for the concerned path in el/m2), f is signal
frequency (Hz), S is the path from the transmitter to the
receiver (m) and n is the electron density (el/m3).
The equation here above only considers the first

order effect of ionosphere on signals propagation. The
ionospheric delay mathematical representation is actu-
ally a limited development. According to the need of
precision in the expression of the ionospheric delay the
second order effect and the third order effect may be
taken into account. The second (1/f3) and third order
effect (1/f4) are functions of the plasma frequency, the
electrons gyrofrequency and the direction of the wave
with relation to the magnetic field. In most of the cases
only the first order effect is considered to assess the
ionospheric delay. In the case of GPS signals, the sec-
ond order effect is typically of a magnitude of a few
centimeters, while the third order effect has a typical
magnitude of some millimeters.
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All of the GPS errors can be corrected to some ex-
tent by implementing model algorithms depending on
the applications. A major error component of GPS
positioning is the ionospheric delay. However, unlike
other GPS errors, ionospheric delay correction is hard
and complex to model because the ionosphere shows
both spatial and temporal behavior. Ionopspheric
error can be reduced by a dual frequency receiver
using a linear combination technique that can not be
applied for a single frequecy receiver. Operationally
for single-frequency receiver, the Klobuchar model is
employed to correct for ionospheric error, however,
the Klobuchar model permits to correct about 50% of
the ionospheric error for mid-latitudes location and
average ionospheric environment (Klobuchar, 1975).
Therefore, the ionospheric modeling has been investi-
gated for last few decades to develop an accurate
ionospheric correction for single-frequency receiver.
Currently, GPS analysis centers provide GIMs (Global
Ionosphere Maps) on a daily basis. The widely used
GPS-derived GIMs are provided by the Center for
Orbit Determination in Europe (CODE), the Jet Pro-
pulsion Laboratory (JPL) and the International GNSS
Service (IGS) with a spatial resolution of 2.5° and 5.0°
in latitude and longitude, respectively, and a 2-h tem-
poral resolution (Komjathy 1997; Feltens and Jakowski
2002). However, the Global Ionospheric Map (GIM)
models (GIM) models such as CODE, JPL and IGS
GIM models cannot reproduce local, short-lasting
processes in the ionosphere. In addition, the reso-
lution of these products might not be sufficient to
support high quality GPS positioning, especially in
the presence of local ionospheric disturbances. The
need to produce regional ionosphere models for ac-
curate positioning was investigated by many re-
searchers (Komjathy and Langley, 1996; Hernández-
Pajares et al., 1997; Hernandez- Pajares et al. 1999;
Liu and Gao, 2003; Wielgosz et al., 2003; Moon,

2004; Leandro and Santos 2007; Sayin et al., 2008;
Maruyama, 2007; Liu et al., 2011; Liu et al., 2014;
Ohashi et al., 2015 and Razin et al., 2015), where dif-
ferent algorithms were employed for regional iono-
sphere modeling such as Spherical harmonics, Spline
interpolation, Gaussian process, kriging and artificial
neural networks. However, due to the nonlinearity of
ionosphere physical properties a highly nonlinear
model a highly nonlinear wavelet network method is
proposed in this paper to model and predict the tem-
poral and spatial variations of ionosphere modeling.
The main objective of the paper is to develop a
short-term prediction model based on a short dataset.
Therefore, five GPS stations with five days of iono-
spheric datasets along with time and location with
15 min sampling rate are employed to develop the
proposed WN-based ionospheric model. Four days of
datasets are employed to develop the model and one
day of dataset is employed to test the prediction ac-
curacy. Also, a comparison is made between the pro-
posed wavelet network based ionospheric model and
the well-established CODE, JPL and the IGS Global
Ionospheric Map (GIM) models.

Ionospheric delay estimation
The major range error for GPS measurements is
mainly due the deviation of the speed of the signal
from its actual light speed because of the presence of
free electrons in the ionosphere medium. This
medium is extended from 50 km to about 1000 km
above the earth surface. The variations of the iono-
spheric effects are mainly governed by the ionization
processes, which is caused by the solar radiation.
Hence there is a direct relationship and the state of
the ionosphere can be realized by observing the
intensity of the solar activity. The physical character-
istics of the ionosphere have noticeable diurnal (day
and night) variations. During the sun rise, the

Fig. 1 Estimated noisy and smoothed TEC for one satellite
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electron density starts to build up due to the ultravio-
let radiations which help to break up gas molecules
into ions and free electrons (Leick, 2004; Hofmann-
Wellenhof et al., 2008).
Single-frequency receivers can access eight iono-

spheric coefficients, located in the GPS navigation
message to estimate the ionospheric delay based on
the Klobuchar model. These coefficients are generated
at least once per 6 days but no more than once a day
and they are updated by the 5 GPS Ground Control
Segment stations. The Klobuchar algorithm is a phys-
ical model that considers the changes in latitude, sea-
son, solar flux and magnetic activity representing the
amplitude change along with the associated diurnal
period change of the ionospheric delay. The Klobu-
char model permits to correct about 50% of the iono-
spheric error for mid-latitudes location and average

ionospheric environment. Therefore, the ionospheric
modeling has been investigated for last few decades
to develop an accurate ionospheric correction for
single-frequency receiver applications. To develop a
regional ionospheric model, the ionospheric error is
estimated using dual frequency receivers distributed
in the area under consideration as discussed below.
GPS signals are transmitted in two L frequency bands

(L1 and L2) and a dual frequency receiver can be used
to provide code measurements (Pf1 and Pf2) and carrier-
phase measurements (ϕf1 and ϕf1). The receiver is able
to assess the ionospheric delay on f1 using code mea-
surements combination IP − f1 or using carrier-phase
measurements combination Iϕ − f1 of identical amplitudes
as follows (Hofmann-Wellenhof et al., 2008):

IP−f 1 ¼
Pf 1−Pf 2
� �

:f 22
f 22−f

2
1

ð3Þ

Iϕ−f 1 ¼
ϕ f 2−ϕf 1

� �
:f 22

f 22−f
2
1

ð4Þ

The integration of the above code measurements com-
bination and carrier-phase measurements combination
along with the ionospheric delay from equation (1) can
produce the smoothed value of the TEC as follows:

TEC ¼ 1
40:3

1

f 1
2 −

1

f 2
2

� �−1

ϕ f 2−ϕ f 1

� �
− ϕf 2−ϕf 1

� �
0
þ P1−P2ð Þ0

� �
el=m2
� �

ð5Þ
where (ϕf2 − ϕf1)0 and (P1 − P2)0 are the initial

values of the carrier-phase measurements

Fig. 2 Ionospheric shell and different angles

Fig. 3 General Wavelet Network Structure (Nm-input, Ni-wavelons,
and Nj-outputs). Blue arrows indicate the weights parameters for the
connected layers
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combination and code measurements combination,
respectively, and el is the number of electrons. Fig. 1
shows an example of a noisy and smoothed TEC for
one satellite.
The ionospheric delay is estimated at the ionosphere

pierce point (IPP) that is defined as the intersection

between the constant ionosphere ellipsoid (350 km
above the WGS84 ellipsoid) and the line in view from
the receiver antenna reference point to the satellite an-
tenna reference point. Fig. 2 shows he cross-section of
main components; Earth, receiver, ionosphere shell, sat-
ellite and their spatial relationship. If the elevation angle

Fig. 4 Methodology

Fig. 5 The geographic location for OKTU, OKTE, OKAN, OKMA and OKMU stations from the CORS map
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of a satellite (α) is estimated, the Zenith angle at receiver
(z ') and the Zenith angle at IPP (z) can be estimated as
follows:

z0 ¼ 90∘−α ð6Þ

z ¼ sin−1
R: sin z′ð Þ
Rþ h

� �
ð7Þ

It is worth noting that an appropriate cut-off angel is
used to ignore those satellites with bad geometry and
under horizon level (Hofmann-Wellenhof et al., 2008).
In practice, the ionospheric model is developed using

the vertical total electron content (VTEC) that should be
estimated at the IPP. Using a simple geometric function,
vertical Total Electron Content can be estimated as:

VTEC ¼ TEC � Cos zð Þ ð8Þ
where z is the zenith angle at pierce point.
In this paper, the wavelet network model is proposed to

model the estimated VTEC form a number of GPS

receivers in a regional area and the model was validated
by the Global Ionospheric Model (GIM) developed by the
CODE analysis center.

Wavelet network model
The wavelet network is an efficient method for data mod-
eling. Zhang and Benveniste (1992) proposed the algo-
rithms of the wavelet network methodology. Afterward,
several researchers extended their studies to improve the
wavelet network procedure for parameter estimation and
learning algorithms (Zhang, 1997). Also, the application of
the wavelet network in modeling and prediction has been
implemented in several areas of studies such as El-Diasty
et. al (2007), Oussar et al. (1998) and Adeli and Samant
(2000). It is worth noting that no studies have imple-
mented wavelet networks in regional ionospheric model-
ing and prediction. A wavelet network is an algorithm
connects the neural network with the wavelet decompos-
ition that leads to a wavelet network structure with the
highly nonlinear wavelet function. In this research, the

Fig. 6 The estimated IPP positions and the GIM grid points located in the study area

Fig. 7 The trained (modeled – four days) and tested (predicted – one day) WN-based VTEC values compared with the CODE GIM model, JPL GIM
model, IGS GIM model and the Klobucher model
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tidal height prediction model is developed using wavelet
network model with an output ŷk computed as:

ŷk ¼
XNm

m¼1

ciΨ am xkm−bm
� �� �þ w ð9Þ

where xkm is the input neuron, ci are coefficient variables,
am are dilation variables, bm are translation variables,
and Ψ is a wavelet function. Fig. 3 shows the wavelet
network structure. The wavelet network consists of an
input vector of Nm values, a layer of Ni weighted wave-
lets and an output vector of Nk output neurons. The
wavelet network parameters (ci, am, and bm) can be esti-
mated by a backpropagation-learning method (Haykin
1999; Lekutai, 1997; Zhang and Benveniste, 1992).
If Nkis the number of outputs, ydk is the desired output

values and ŷk is the network output estimated from Eqn.
(9), then, the wavelet network training objective is to
minimize the error function, E (Haykin 1999; Lekutai 1997;
Zhang and Benveniste, 1992):

E ¼ 1
2

XNk

k¼1

ydk−ŷk
� � ð10Þ

The selection of the wavelet function depends on the
application. There are several wavelet functions that can
be utilized to develop the wavelet network model such
as Morlet, Shannon and Mexican hat. We use the Mexi-
can hat in this research to implement the proposed non-
linear regional ionospheric model. The Mexican hat
wavelet function for any variable x is:

Ψ xð Þ ¼ xk k2−p� �
e−

xk k2
2 ; ð11Þ

where, ‖x‖2 = xTx, and p is the order of the model (12)
The Mexican hat wavelet function is known as

Laplacian operator and represents the second deriva-
tive of the Gaussian function (Percival and Walden,
2000). The root-mean-squared (RMS) is commonly
used to evaluate the model performance. The RMS
error can be computed as:

Fig. 8 The map shows diurnal variations of the WN-based VTEC values (TECU) in a timelatitude domain

Fig. 9 The map shows diurnal variations of the IGS GIM VTEC values (TECU) in a timelatitude domain
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RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
j¼1Nj

XNk

k¼1

ydkj−ŷkj
� �0

@
1
A

2

Nk :Nj

vuuuuut ð13Þ

The structure of the wavelet network is determined by
empirical methods. The number of neurons can be deter-
mined by training different architectures with different
number of neurons to select the optimal number, based
on the lowest RMS error (El-Diasty et al. 2007). It should
be noted that the dilation and transition properties of the
wavelet function make the wavelet network much more
dynamic, flexible, robust, and promising methodology for
regional ionospheric modeling and prediction than trad-
itional artificial neural network method.

Methods
The wavelet network method regional ionospheric mod-
eling and prediction was implemented over three major
stages as shown in Fig. 4. The implementation of these

three stages was performed through; 1) Data preparation
stage, 2) Ionospheric modeling and prediction stage and
3) comparison stage. In the first stage, the estimated
VTEC for five days long from five RINEX GPS data
from the USA CORS network were obtained. In the sec-
ond stage, a wavelet network model was developed and
the well-established CODE, JPL and the IGS Global
Ionospheric Map (GIM) models were employed to esti-
mate the VTEC for the regional area under investigation.
Then in the third stage, a comparison was made be-
tween the developed wavelet network model and the
well-established CODE, JPL and the IGS Global Iono-
spheric Map (GIM) models.
The VTEC were estimated for five days long from

five GPS CORS stations in Oklahoma, USA, namely
OKTU, OKTE, OKAN, OKMA and OKMU were used
to implement the proposed wavelet network model
and compare the results with the CODE and JPL
GIM models. Fig. 5 shows the geographic location for
OKTU, OKTE, OKAN, OKMA and OKMU stations
from the CORS map.

Fig. 10 The absolute mean of the WN-based VTEC values compared with the CODE, JPL and IGS GIM models

Fig. 11 The errors (the difference between the absolute mean of modeled VTEC values) from WN-based model when compared with the CODE,
JPL and IGS GIM models
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The structure of the wavelet network was built using
the Matlab software version 2010. Many wavelet net-
work models were carried out to optimize the structure
of the wavelet network using four days of dataset to
build the model and one day of dataset to test (predic-
tion mode) the proposed WN-based model. It was found
that the wavelet network with the structure [5–90–1]
provides the best solution with the lowest root-mean-
square (RMS) error. The input layer of five values that
represent first input of the day number (one to five),
second input of the time of the day (from 0 to 24 in
15 min interval), third input of the latitude of the IPP
point (in radians), fourth input of the longitude of the
IPP (in radians) and fifth input of the estimated Klobu-
char model at same IPP point. The hidden layer of 90
wavelet neurons (wavelons) was employed to model the
desired VTEC value.

Results and discussion
In this section, the results of the developed wavelet net-
work model are investigated and a comparison was
made between the developed wavelet network based
model and the CODE, JPL and the IGS Global Iono-
spheric Map (GIM) models. It should be noted that the
IGS GIM model is a combination of GIM models pro-
vided by several analysis centers. All the analysis centers
involved may use different approaches to the VTEC der-
ivation from GPS observations, as well as different
VTEC representation/modeling techniques. The spatial
resolution of the GIM model is 2.5° in latitude and 5.0°

in longitude. For comparison purposes, a regional model
was extracted from and the CODE, JPL and the IGS
GIM models. Fig. 6 shows the estimated IPP positions
and the extracted GIM model grid points located in the
regional study area.
At the beginning, the estimated VTEC values from

the WN-based model, CODE GIM model, JPL GIM
model, IGS GIM model and the Klobucher model
were investigated. Fig. 7 shows the VTEC values esti-
mated from WN-based model, CODE GIM model,
JPL GIM model, IGS GIM model and the Klobucher
model in time domain. Then, the VTEC values from
the WN-based model, CODE GIM model, JPL GIM
model and IGS GIM model were estimated in time
and latitude domain. Figs. 8 and 9 show the VTEC
values from the WN-based model and IGS GIM
model, respectively. It can be seen that the two
models show similar diurnal variations in time do-
main at the same time slots. The other two CODE
and JPL GIM models showed similar results as of the
IGS GIM model and therefore are not shown in this
paper. It should be noted that the gaps in the WN-
based model represented the areas with no IPP points
during the five days of GPS observations under inves-
tigation. Afterwards, the overall performance of the
VTEC values from the WN-based model, CODE, JPL
and IGS GIM models were investigated. Fig. 10 shows
the absolute mean of the VTEC values estimated from
the developed WN based model when compared with
the CODE, JPL and IGS GIM models. Fig. 11 shows

Table 1 The summary statistical results when the absolute VTEC mean estimated from wavelet network model is compared with
the ones estimated from CODE, JPL and IGS GIM models for training dataset (4 days)

Statistical parameter WN-based model versus
CODE GIM model

WN-based model
versus JPL GIM model

WN-based model
versus IGS GIM model

Correlation between the
WNbased model and GIM model

87.9% 86.7% 87.7%

RMS error between the
WNbased model and GIM model

2.51 TECU 2.75 TECU 2.50 TECU

ercentage of error 3.4% 3.8% 3.4%

Absolute VTEC error bias 1.95 TECU 1.90 TECU 1.78 TECU

Absolute VTEC maximum error 7.9 TECU 8.54 TECU 7.3 TECU

Table 2 The summary statistical results when the absolute VTEC mean estimated from wavelet network model is compared with
the ones estimated from CODE, JPL and IGS GIM models for testing (prediction) dataset (1 day)

Statistical parameter WN-based model
versus CODE GIM model

WN-based model
versus JPL GIM model

WN-based model
versus IGS GIM model

Correlation between the
WNbased model and GIM model

88.12% 86.5% 88.5%

RMS error between the
WNbased model and GIM model

2.50 TECU 2.83 TECU 2.40 TECU

Percentage of error 3.60% 4.2% 3.4%

Absolute VTEC error bias 1.78 TECU 2.03 TECU 1.89 TECU

Absolute VTEC maximum error 7.17 TECU 8.54 TECU 5.78TECU
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the errors (the difference between the absolute mean
of modeled VTEC values) from developed WN based
model when compared with the CODE, JPL and IGS
GIM models. Tables 1 and 2 illustrate the summary
statistical results when the absolute VTEC mean esti-
mated from developed WN based model compared
with the ones estimated from CODE, JPL and IGS
GIM models for the trained (four days) and the tested
(prediction mode for one day) datasets. It can be seen
from Tables 1 and 2 that the RMS errors are about
2.51 TECU, 2.75 TECU and 2.50 TECU (Total Elec-
tronic Content Unit) when the WN-based model
compared with the CODE, JPL and IGS GIM models.
It is also shown from Tables 1 and 2, and Fig. 11 that
the percentage of the WN-based model error is about
3.4%, 3.8% and 3.4% when WN-based model com-
pared with the CODE, JPL and IGS GIM models and
with a maximum absolute error of about 7.17 TECU,
8.17 TECU and 5.74 TECU, respectively. Therefore,
in practice the developed WN model can be used for
real-time regional ionospheric modeling for accurate
GPS positioning with a single frequency GPS receiver
and can reduce the ionospheric error with about 96%
in average. It is worth noting that the accuracy of the
developed short-term WN-based model agrees well
with the most recent modeling methods of regional
TEC such as spherical cap harmonic analysis model
(Liu et al., 2011; Liu et al., 2014), despite the use of
short datasets.

Conclusion
The main objective of the paper is to develop a short-term
prediction model based on a short dataset. An ionospheric
model using a wavelet network method was proposed and
developed in this paper. GPS data from five stations for
five days long were used to implement and validate the
proposed model. The wavelet network structure of 5–90–
1 gave the best performance solutions (i.e., the minimum
RMS), and therefore was used in modeling the VTEC
values. It is shown that the Root-Mean-Squared (RMS) er-
rors of the developed WN-based ionospheric model are
2.51 TECU, 2.75 TECU and 2.50 TECU (Total Electronic
Content Unit) with percentage errors of about 3.4%, 3.8%
and 3.4% when compared with the CODE, JPL and IGS
GIM models and with a maximum absolute error of about
7.17 TECU, 8.17 TECU and 5.74 TECU, respectively.
Therefore, in practice the developed WN model can be
used for real-time regional ionospheric modeling for ac-
curate GPS positioning with a single frequency GPS re-
ceiver and can reduce the ionospheric error with about
96% in average.
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