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Abstract

This paper presents a novel two-step camera calibration method in a GPS/INS/Stereo Camera multi-sensor
kinematic positioning and navigation system. A camera auto-calibration is first performed to obtain for lens
distortion parameters, up-to-scale baseline length and the relative orientation between the stereo cameras. Then,
the system calibration is introduced to recover the camera lever-arms, and the bore-sight angles with respect to
the IMU, and the absolute scale of the camera using the GPS/INS solution. The auto-calibration algorithm employs
the three-view scale-restraint equations (SRE). In comparison with the collinearity equations (COL), it is free from
landmark parameters and ground control points (GCPs). Therefore, the proposed method is computationally more
efficient. The results and the comparison between the SRE and COL methods are presented using the simulated
and road test data. The results show that the proposed SRE method requires less computation resources and is
able to achieve the same or better accuracy level than the traditional COL.

Keywords: Camera auto-calibration, Lens distortion, Relative orientation, Lever arms, Bore-sight angles, GPS, IMU,
Scale restraint equation
Introduction
The high demand for low-cost multi-sensor kinematic
positioning and navigation systems as the core of
direct-georeferencing technique in mobile mapping is
continuously driving more research and development
activities. The effective and sufficient utilization of images
is among the most recent scientific research and high-tech
industry development subjects. In this particular field,
York University’s Earth Observation Laboratory (EOL) is
engaging in the study of the image-aided inertial integrated
navigation as the natural continuation of its past research
in the multi-sensor integrated kinematic positioning and
navigation (Qian et al. 2012; Wang et al. 2015).
An image-aided inertial navigation system (IA-INS)

implies that the errors of an inertial navigator are esti-
mated via the Kalman filter using measurements derived
from images. The image-based navigation algorithms,
such as visual odometry (VO) (Konolige et al. 2011;
Scaramuzza and Fraundorfer 2011; Gopaul et al. 2014,
2015) or visual Simultaneous Localization and Mapping
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(SLAM) (Durrant-Whyte and Bailey 2006; Williams and
Reid 2010; Lategahn et al. 2011; Alcantarilla et al. 2012),
usually assume that a camera system is calibrated prior
to its use and the calibration parameters do not change
over time. The internal camera parameters (focal length,
principal point and lens distortion) and the external
camera parameters (baseline and relative orientation be-
tween cameras, lever-arms and bore-sight angles with
respect to the inertial measurement unit (IMU)) are re-
quired to relate the image coordinates with the object
coordinates in the scene. The process of estimating these
parameters is referred to as the camera calibration.
The traditional camera calibration consists of capturing

images containing an array of the reference targets in a
laboratory, whose coordinates are accurately known (Wolf
and Dewitt 2000). However, these parameters can be inva-
lidated during in-field operations, e.g., during camera
assembly/disassembly, replacement, bumps (Teller et al.
2010) or significant temperature variations. Recently many
developments have focused on the in-field camera auto-
calibration (or self-calibration) for image-inertial systems.
An auto-calibration refers to the determination of the
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camera parameters from a sequence of the overlapping
images without necessarily setting up ground control
points (GCPs) or special calibration targets. Typically,
auto-calibration process is performed in a bundle adjust-
ment (BA) (Triggs et al. 1999) or in the SLAM framework
(Civera et al. 2009; Kelly and Sukhatme 2009; Kelly et al.
2011; Keivan and Sibley 2014). It involves the simultan-
eous estimation of the positions and orientations of the
camera, the positions of the stationary landmarks, and
the calibration parameters of the camera. The corre-
sponding mathematical equation system, which models
the parameters through the available measurements, is
usually solved by using non-linear least-squares, the
Levenberg-Marquardt algorithm or a Kalman filter.
These methods however are computationally expensive
due to the very large number of landmark position
parameters.
Accordingly, this paper proposes a novel camera cali-

bration method that can precisely calibrate the internal
and external camera parameters with a GPS/INS/Stereo
camera system exclusive of the landmark position parame-
ters. The method applies the three-view scale-restraint
equation (Bethel 2003; Ghosh 2005), with which the mea-
surements are processed exclusively in the image space
without landmark parameters. Therefore, it does not allo-
cate large memory and computation resources. The re-
mainder of the paper is organized as follows. Related
work section overviews the related work. Then, the
novel algorithm is proposed in Two-step camera calibra-
tion method section, which is followed by test results
using the simulated and real data as Test results and
analysis section. Conclusions section ends the paper with
discussions, and conclusions.

Related work
Bender et al. (2013) presented an in-flight graph based
the BA approach for system calibration between a rigidly
mounted camera and an inertial navigation system.
Image point features and GPS aided-INS position and
orientation solution were used as measurements. Their
method simultaneously computed the internal camera
parameters as well as the 6-dof transformation (i.e. lever
arms and relative orientation) between the two systems.
However their method also required at least one GCP
in-order to recover the z-component of the lever-arm.
Kelly and Sukhatme (2009) proposed a camera-IMU
self-calibration method within the SLAM framework im-
plemented by an unscented Kalman filter. The lever-
arms and mounting angles, the IMU gyroscope and
accelerometer biases, the local gravity vector and land-
marks could all be recovered from camera and IMU
measurements alone. However, they assumed that the
internal camera parameters were known beforehand.
(Mirzaei and Roumeliotis 2008) presented a similar
tightly-coupled approach using an iterative extended Kal-
man filter, but, in need of known landmark position.
The methods in (Bender et al. 2013; Kelly and Sukhatme

2009; Kelly et al. 2011) implemented structure-from-
motion (SfM) and contains stationary landmark parame-
ters. SfM algorithms, which compute 3D coordinates from
2D image correspondences, have some disadvantages. The
3D Cartesian coordinates of distant objects are biased
(Sibley et al. 2005) and are not well represented by
Gaussian distributions (Civera et al. 2008). Similar
problems arise when the baseline length between the
stereo cameras and the distance between the consecu-
tive frames are small in monocular vision (Scaramuzza
and Fraundorfer 2011). Furthermore, the inclusion of
landmark position in the parameter vector has two
main drawbacks. First, the BA and SLAM implementa-
tion requires a good initial guess which can be difficult
especially in monocular vision and when landmarks
that were far away. Second, the number of landmark
parameters can be very large which can result in diffi-
cult and computationally expensive estimation. Efforts
to reduce the computational load were introduced in
(Dang et al. 2009) where a 3D landmark position was
decomposed in to 1D feature depth parameter by algebra-
ically eliminating the x and y components using equations
from the stereo pair. However, it still required the estima-
tion of the landmark depth, a parameter not particularly
useful in the calibration procedure.
Auto-calibration algorithms require a minimal con-

straint to define the network datum, which can be done
by applying the minimum constraint, free-network adjust-
ment, or through an explicit minimal control point
(Remondino and Fraser 2006). In the free-network adjust-
ment situation, the absolute scale of the camera system
cannot be known without additional information. (Kelly
et al. 2011) focused on determining the absolute scale of
both the scene and the baseline in a stereo rig using GPS
measurements. Their approach was similar to photogram-
metric BA and the structure from motion algorithms.
They could recover the baseline and relative orientation
between the two cameras and lever-arms between the
GPS antenna and reference camera. Similar to their previ-
ous method in (Kelly and Sukhatme 2009), they assumed
that the internal camera parameters were known before-
hand. Three or more overlapping image frames are re-
quired in order to estimate the camera motion on a
common scale. Structure-free motion algorithms typically
relied on three-view constraints (Yu et al. 2006; Indelman
et al., 2013) for the same reason. The advantage is obvious.
They could be exclusive of landmark position parameters
and result in a more efficient algorithm.
The proposed method consists of two steps; firstly, the

three-view scale-restraint equation is used to perform
the free-network auto-calibration in a stereo camera



Fig. 1 Reference frame definition
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system. This enables all images to operate on a common
scale. And then the GPS/INS solution is applied to
recover the absolute scale, as well as the bore-sight
angles and the lever-arms with respect to the IMU.

Methods
In essence, a non-linear least-squares algorithm is
employed to estimate the internal camera parameters,
the stereo baseline and the relative orientation, the
lever-arms and bore-sight angles using image mea-
surements together with the integrated GPS aided-
inertial solution. The method proceeds in two steps:
(a) the stereo auto-calibration using only image mea-
surements and then (b) the system calibration using
the GPS-aided inertial integrated navigation solution
(position and orientation) as external measurements.
It functions under the assumptions

� The object points in the scene are stationary;
Fig. 2 Three view geometry
� The raw measurements from the sensors are
synchronized;

� The GPS/INS blended solution has been processed;
� The GPS/INS position is referenced at the center of

the IMU.

Reference frames
The following four coordinate systems are used through-
out this paper (Fig. 1).
The navigation frame (n-frame) is a frame that moves

with the vehicle with its origin located at a predefine
point on the vehicle. Its z-axis is normal to the refer-
ence ellipsoid and points downwards while its x and y
axes point towards the geodetic North and East, re-
spectively forming a right-handed Cartesian coordinate
system.
The (n’-frame) has the same origin as the n-frame. Its

orientation is arbitrary but fixed with respect to the n-
frame.



Table 1 Auto-calibration parameters (L and R denote left and
right camera)

Parameter Description

ΔfL, ΔfR Correction for focal lengths [px]

ΔxL;0 ;ΔyL;0ΔxR;0;ΔyR;0 Correction for principal points [px]

kL;1 ; kL;2; kL;3kR;1; kR;2; kR;3 Radial lens distortion parameters
[px−2, px−4, px−6]

bc
LR Stereo baseline vector [m]

Cc
cR Right camera to left camera DCM defined

by Euler angles θccR deg½ �
ΔXn′

L;k;k−1 Position difference of the left camera
between two consecutive frames [m]

Cn′ Camera to n’-frame DCM defined by
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The body frame (b-frame) shares the same origin with
the n-frame. Its x-axis points along the vehicle’s longitu-
dinal axis and the z-axis points down while its y-axis
forms a right-handed coordinate system.
The camera frame (c-frame) is a frame in which the

image measurements are taken. Its origin is at the perspec-
tive center of the reference camera. Its x-axis and y-axis
are parallel to the columns and rows of the charge-coupled
device (CCD) sensor while its z-axis points away from the
CCD sensor to form a right handed coordinate system.
The camera system is assumed to be rigidly mounted on
the vehicle. Hereafter, the left camera is set as the reference
camera in the stereo system.
c;k
Euler angles θn

′

c;k deg½ �
Measurement equations
Collinearity equations
The algorithmic development starts with the well-known
extended collinearity equation (COL) which relates the
object point position vector Xn

i m½ � , its corresponding
image point (xi, yi)[px], the camera’s perspective center
Xn[m] and the direction cosine matrix DCMð ÞCn

c as
follows:

xi ¼ x0−f
Cn

c;11;C
n
c;21;C

n
c;31

h i
• Xn

i −X
n

� �
Cn

c;13;C
n
c;23;C

n
c;33½ �• Xn

i −X
nð Þ

 !
þ Δxd;i þ vxi

yi ¼ y0−f
Cn

c;12;C
n
c;22;C

n
c;32

h i
• Xn

i −X
n

� �

Cn
c;13;C

n
c;23;C

n
c;33

h i
• Xn

i −X
n

� �

 !
þ Δyd;i þ vyi

ð1Þ

Where (x0, y0), f and vxi ; vyi
� �

are the principal point, the
focal length and the measurement noises, respectively. In
the presence of lens distortion, the image coordinates of a
point deviate from its true ones by (Δxd,i,Δyd,i), which can
be modelled by (Brown 1971):
Fig. 3 Four view match
Δxd;i ¼ −Δx0−
x
f
Δf þ x k1r

2 þ k2r
4 þ k3r

6 þ…
� �

þ p1 r2 þ 2x2
� �þ 2p2xy−A1x þ A2y

Δyd;i ¼ −Δy0−
y
f
Δf þ y k1r

2 þ k2r
4 þ k3r

6 þ…
� �

þ2p1xy þ p2 r2 þ 2y2
� �

ð2Þ

where r is the radial distance from the principal point to

the image point r2 ¼ x2 þ y2 ¼ xi−xoð Þ2 þ yi−yoð Þ2� �
;Δf

is the focal length error, (Δx0, Δy0) is the principal point
error, ki and pi are the coefficients of radial distortion
and decentering distortion, respectively, and Ai are the
affine deformation parameters. Most of the radial lens
distortion is generally accounted by second term k2r

4

(Barazzetti et al. 2011). The terms with k3 and even with
k4 term are typically included in higher-accuracy applica-
tions and wide-angle lenses. Here, the decentering dis-
tortion and affine deformation models will not be
applied because they are generally very small. Further-
more, their errors will be absorbed by other terms, for
example, the principal point (Fraser 2013).



Fig. 4 SREs and the four views

Table 2 Dimension of the parameter vector (COL vs. SRE)

COL SRE

Number of image frames nx nx

Number of observed landmarks nlm nlm

Focal length, principal point 2x3 2x3

Lens distortion (k1, k2, k3) 2x3 2x3

Stereo baseline and relative orientation 2 + 3 2 + 3

Camera position and orientation 6 (nx−1) 6 (nx−1)

Landmark parameters 3nlm 0

Total 11 + 6nx + 3nlm 11 + 6nx
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Scale restraint equation
The scale restraint equation (SRE) is a robust three-view
constraint that forces the images to operate on one com-
mon scale. Let’s consider image point vectors xn1; x

n
2 and

xn3 (Fig. 2):
where

xni¼1;2;3 ¼ Cn
c;i

xi−xo−Δxd;i −vxi
yi−yo−Δyd;i−vyi

−f

0
@

1
A ð3Þ

and bn12, b
n
23 are the baselines [m] between images 1 and

2, and between images 2 and 3, respectively. If image 1
is relatively oriented to image 2, and image 2 is relatively
oriented to image 3, there is no guarantee that image 1
and image 3 are also relatively oriented to each other
(Bethel 2003). As a result, three vectors xn1; x

n
2 , and xn3

will fail to intersect at a common point due the scale
variations of the three views. The ‘mismatch’ vector dn

12

is perpendicular to both of xn1 and xn2 , and is computed
as dn

12 ¼ xn1 � xn2 . Similarly the ‘mismatch’ vector dn
23

¼ xn2 � xn3 . Midway along the vectors dn
12 and dn

23 is the
point where the two adjacent vectors are the closest.
With the vectors in Fig. 2, one can give

k1xn1−k2x
n
2 þ k12d

n
12 ¼ bn12

k′2x
n
2−k

′
3x

n
3 þ k′23d

n
23 ¼ bn23

ð4Þ

where k1; k2; k12; k
′
2; k

′
3 and k′23 are unknown scalars with

unique values as follows (Ghosh 2005)
k1 ¼ bn12•d
n
12 � xn2

xn1•d
n
12 � xn2

k′2 ¼
bn23•d

n
23 � xn3

xn2•d
n
23 � xn3

k2 ¼ xn1•d
n
12 � bn12

xn1•d
n
12 � xn2

k′3 ¼
xn2•d

n
23 � bn23

xn2•d
n
23 � xn3

k12 ¼ xn1•b
n
12 � xn2

xn1•d
n
12 � xn2

k′23 ¼
xn2•b

n
23 � xn3

xn2•d
n
23 � xn3

ð5Þ

Their analysis in detail can be found in Appendix A.
In order for all the vectors to intersect at the same point,
k2 þ k′2 must equal to zero (Ghosh 2005), i.e.

xn1•d
n
12 � bn12

xn1•d
n
12 � xn2

−
xn2•d

n
23 � bn23

xn2•d
n
23 � xn3

¼ 0 ð6Þ

where in dn
12 ¼ xn1 � xn2 and dn

23 ¼ xn2 � xn3 . Equation (6)
is the scale restraint equation that forces the independ-
ent scale factors for the common ray between the stereo
pair 1–2 and stereo pair 2–3 to be equal (Bethel 2003).



Fig. 6 The 2D trajectory and landmarks

Gopaul et al. The Journal of Global Positioning Systems  (2016) 14:3 Page 6 of 15
This equation is mainly used in successive relative orien-
tation of image pairs and scale transfer.
Camera auto-calibration
Table 1 lists the relevant calibration parameters. At a
given epoch k, the algorithm uses point features
matched from four views which are stereo pairs from
two consecutive epochs, i.e., xcL;k ; x

c
R;k ; x

c
L;k−1 and xcR;k−1

as depicted in Fig. 3.
Fig. 5 Flops vs. number of stereo points (m)
Point features can be extracted using the Harris corner
detector (Harris and Stephens 1988) and matching can be
performed using the Sum of Absolute Differences (SAD)
in an 11 × 11 window. To improve the matching results
between stereo pairs, the search is performed along the
epipolar lines (Bin Rais et al. 2003). Furthermore, to im-
prove the matching between the consecutive frames, the
locations of the features in the current frame can be pre-
dicted from the previous frame using the inertial sensors
(Veth et al. 2006).



� �

Fig. 7 The height, roll, pitch and heading profiles
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The matched points are constrained by two SREs. The
first SRE relates xcR;k ; x

c
L;k and xcL;k−1 while the second

one relates xcL;k−1; x
c
R;k−1 and xcR;k (Fig. 4).

The equations can be expressed as

xR;k
n′• xn

′

R;k � xn
′

L;k

� �
� Cc;k

n′
bcLR

xR;k
n′ • xn′R;k � xn′L;k

� �
� xn′L;k

−
xn

′

L;k• xn
′

L;k � xn
′

L;k−1

� �
� ΔXn′

L;k;k−1

xn′L;k• xn′L;k � xn′L;k−1

� �
� xn′L;k−1

¼ 0

ð7Þ
Fig. 8 The simulation algorithm
xn
′

L;k−1• xn
′

L;k−1 � xn
′

R;k−1 � Cn′
c;k−1b

c
LR

xn′L;k−1• xn′L;k−1 � xn′R;k−1

� �
� xn′R;k−1

−
xn

′

R;k−1• xn
′

R;k−1 � xn
′

R;k

� �
� ΔXn′

R;k;k−1

xn′R;k−1• xn′R;k−1 � xn′R;k

� �
� xn′R;k

¼ 0

ð8Þ

where xn
′

L;k ¼ Cn′
c;kx

c
L;k ; x

n′
R;k ¼ Cn′

c;kC
c
cRx

cR
R;k and ΔXn′

R;k;k−1

¼ ΔXn′
L;k;k−1 þ Cn′

c;k−C
n′
c;k−1

� �
bcLR . In auto-calibration, the

orientation of the camera with respect to the n-frame is



Fig. 9 Number of stereo points per frame (top) and number of cumulative stereo points (bottom)
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not required and can be put aside. At this point the glo-
bal frame is set to the n’-frame. In order to obtain a
free-network adjustment, one component of the baseline

vector bcLR must be free (i.e. 2 dof) and one of the θn
′

c

orientation parameters must be fixed (ideally θn
′

c;k¼1 ¼ 0).
This fixes both the orientation and scale of the system.

Note that ΔXn0
L;k and Cn0

c;k contain transport rate error in
this formulation. Under the assumption that the calibra-
tion area is within a few hundred meters, this error ef-
fect is negligibly small.
Fig. 10 Estimated standard deviation of the focal length error and principa
Camera system calibration
The camera system calibration determines the lever-arms
labL , the absolute scale sc of the camera and the bore-sight

angle vector θbc . The relationship between the GPS/INS
and the left camera can be expressed as the following 7-
parameter transformation:

Xn
GPSINS;k ¼ scC

n
n′X

n0
L;k−C

n
b;GPSINS;k la

b
L ð9Þ

where in Cn
b;GPSINS;k is the GPS/INS DCM as the func-

tion of attitude angles (roll, pitch and heading) and Cn
n′
l point error



Fig. 11 Estimated standard deviation of the focal length error and principal point vs. flops
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is determined by the orientation of the camera system
with respect to the n-frame at the first epoch

Cn
n′ ¼ Cn

c;1 ¼ Cn
b;GPSINS;1C

b
c ð10Þ

where Cb
c is the DCM from the camera to body repre-

sented by the bore-sight angle vector θbc . Differencing (8)
between epochs k − 1 and k gives

ΔXGPSINS;k
n ¼ scC

n
n′ΔX

n0
L;k− Cn

b;GPSINS;k−C
n
b;GPSINS;k−1

� �
labL

ð11Þ

The relationship between Cn
b;GPSINS;k and the camera

DCM Cn′
c;k (from Eqs. (7) and (8)) can be written as
Table 3 Left camera lens distortion parameters

Parameter True value COL SRE1 SRE2

Δf (px) −2 −1.825 −2.713 −2.318

±0.438 ±0.875 ±0.417

Δx0 (px) 2.5 2.393 2.665 2.432

±0.230 ±0.309 ±0.142

Δy0 (px) −3 −3.232 −2.851 −3.061

±0.219 ±0.266 ±0.122

k1 (px
−2) 5.0e−7 5.03e−07 5.07e−07 5.06e−07

±6.47e−09 ±6.97e−09 ±3.21e−09

k2 (px
−4) 4.0e−13 7.16e−14 6.49e−13 3.92e−13

±1.03e−13 ±1.04e−13 ±4.75e−14

k3 (px
−6) 4.5e−19 1.78e−18 4.89e−18 3.72e−18

±4.86e−19 ±4.89e−19 ±2.20e−19
Cn
b;GPSINS;kC

b
c ¼ Cn

n′C
n0
c;k ð12Þ

Equations (11) and (12) equate the GPS/INS informa-

tion ΔXn
GPSINS;k ;C

n
b;GPSINS;k

� �
and the auto-calibration es-

timates ΔXn0
L;k and Cn0

c;k . All of seven parameters can be
solved by using the least-squares.

Computation complexity of COL and SRE
This section compares the number of parameters and
the number of floating point operations (flops) between
COL and SRE auto-calibration algorithms.
Table 2 shows the number of parameters with COL

and SRE auto-calibration system with nx stereo image
frames and nlm visible landmarks. One component of
the stereo baseline is left free (i.e., only two stereo
Table 4 Right camera lens distortion parameters

Parameter True value COL SRE1 SRE2

Δf (px) +2 2.082 2.534 2.078

±0.441 ±0.884 ±0.421

Δx0 (px) −2 −2.003 −2.250 −2.029

±0.226 ±0.319 ±0.146

Δy0 (px) 1 0.391 1.217 1.233

±0.217 ±0.243 ±0.112

k1 (px
−2) 5.0e−07 5.08e−07 5.04e−07 5.06e−07

±6.72e−09 ±8.02e−09 ±3.76e−09

k2 (px
−4) 4.0e−13 2.85e−13 2.38e−13 3.60e−13

±1.08e−13 ±1.28e−13 ±6.03e−14

k3 (px
−6) 4.5e−19 9.01e−19 5.89e−18 5.82e−18

±5.21e−19 ±6.22e−19 ±2.93e−19



Table 6 Number of points and parameters

COL SRE1 SRE2

Number of stereo points 17,074 17,074 77,945

Number of parameters 8417 563 563

log10 (flops) 12.4 8.8 9.4
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baseline parameters). The number of the camera pos-
ition and orientation parameters is 6 (nx−1) in total be-
cause the first camera position and orientation is fixed
(practically they are set to zero). The advantage of
employing SRE is to have the number of the estimated
parameters far less than the one with COL.
The flop count is the total number of textbook multi-

plication and addition operations required to obtain a
least squares (LS) solution. The factors taken into ac-
count in the analysis are the number of the matched ste-
reo points (i.e. number of measurements), the number
of the image frames, the number of the landmarks in
view and the percentage overlap between consecutive
frames. The percentage overlap encompasses camera
rate, the velocity and the angular rate of the camera.
Furthermore, COL employs the LS algorithm in the ex-
plicit form (i.e., z = h(x)) to estimate the parameters
while the SRE uses implicit LS (i.e., h(x, z) = 0)); where x
is the parameter vector, z is the measurement vector and
h(.) is the functional model. The flop counts between
the two will be different under a given number of mea-
surements and parameters.
In order to simplify the analysis, the number of image

frames is kept constant (here set to 92, the same num-
ber used in the test results). Furthermore, the number
of measurements, landmarks and the overlapping per-
centage is assumed to have the following predictive
relationship

m′ ¼ m
nlm

¼ 1
1−p

ð13Þ

where m′ is the average number of the matched stereo
pairs per landmark, m is the total number of the
matched stereo pairs and p is the average overlapping
percentage. For instance, if p = 75% then m′ = 4. This
means on average a landmark is viewed on four images.
Table 5 Relative orientation of right camera w.r.t left camera

Parameter True value COL SRE1 SRE2

bcLR:x mð Þ 0.01 0.011 0.007 0.007

±0.001 ±0.002 ±0.001

bcLR:y mð Þ a 0.65 0.650 0.650 0.650

bcLR:y mð Þ −0.1 −0.013 −0.013 −0.012

±0.004 ±0.004 ±0.002

θccR;x degð Þ −0.25 −0.257 −0.266 −0.260

±0.007 ±0.008 ±0.004

θccR;y degð Þ 0.5 0.504 0.500 0.494

±0.008 ±0.014 ±0.006

θccR;z degð Þ 0 0.002 −0.003 −0.002

±0.002 ±0.002 ±0.001
aFree parameter
By keeping the average percentage overlap constant, the
number of landmarks in the system can be predicted
with a given number of stereo points. The number of
measurements and parameters in the LS are now known
and therefore the flop count can be predicted. Figure 5
shows the number of flops vs. number of stereo points
required in COL and SRE with overlapping of 70, 80
and 90%.
As expected, the plot shows that COL uses more flops

than SRE. As percentage overlap increases, the number
of flops in COL decreases because the number of the
matched stereo pairs per landmark becomes larger.
Therefore, given the same number of measurements, the
number of the landmark parameters becomes smaller.
As percentage overlap increases, the number of flops in
SRE increases because more matrix inversion operations
are needed in the implicit LS algorithm. The accuracy
analysis is presented in Auto-calibration results section.

Results and discussion
In this section test results from the simulated, laboratory
and real data are presented. Simulations were performed
to validate the proposed SRE auto-calibration algorithm
and to show how its performance (both computation
and accuracy) in comparison with the one from the
COL auto-calibration method. Finally results from land
vehicle data are presented.

Results from the simulated data
The simulations were conducted to compare the per-
formance of COL and SRE auto-calibration algorithms
based on a typical land vehicle trajectory (i.e. large hori-
zontal motion and heading variation). Figure 6 shows
the vehicle’s trajectory and the landmarks. The vehicle’s
height and attitude profiles are given in Fig. 7.
The camera resolution and the field of view (FOV)

were set to 640 × 480 pixels and 50° (equivalent to 686.2
pixels), respectively. The baseline between the two cam-
eras is 0.65m long. Figure 8 describes the simulation pa-
rameters. The number of the epochs is 92. To simulate
Table 7 IMU440CA Specification

Angular Rate Bias Stability [deg/h] <10.0

Angle Random Walk [deg/√hr] <4.5

Acceleration Bias Stability [mg] <1.0

Velocity Random Walk [m/s/√hr] <1.0



Fig. 12 The 2D overview of the trajectory (left), the velocity and attitude profiles (right)
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the urban scenario, the landmarks between the ranges
15 and 25 were selected to be in view of the camera.
Furthermore, the measurement noise was set to zero
mean Gaussian noise with the standard deviation of
0.5px. The initial value for each camera calibration par-
ameter was set to zero except the baseline component
bcLR:y as the free parameter and equal to 0.65m.
Auto-calibration accuracy analysis
The accuracy analysis on COL and SRE algorithms is
presented in this section. Auto-calibration results from
one COL and two SREs are presented (i.e. SRE1 and
SRE2). The estimates from COL and SRE1 were ob-
tained using the same number of the measurements,
i.e., 17,074 stereo points (m) whilst SRE2 used 4.5 times
more measurements. The average percentage overlap
for all three cases was 74%. Figure 9 shows the number
of stereo points per frame and the number of accumu-
lated stereo points.
Fig. 13 The calibration period (left). A stereo pair with matched points (righ
Figure 10 shows the estimated standard deviation of
the focal length error and principal point obtained from
the three estimates w.r.t. epoch. The results showed that
with a given number of measurements, SRE1 performed
worse than COL. However SRE2 required 4.5 times
more to be equivalent or better than COL. Figure 11
shows the estimated standard deviation w.r.t. the num-
ber of flops. The results showed that both SRE1 and
SRE2 required less computation resources to achieve the
same level of the accuracy as COL.

Auto-calibration results
This section presents the final results from COL, SRE1 and
SRE2. Tables 3, 4 and 5 show the true values, estimates
and their standard deviations for the left, right and relative
camera orientation calibration parameters, respectively.
The results showed that the accuracy of the focal length
error from COL and SRE2 were similar and better than
SRE1. SRE2 estimated the best principal point error, but
SRE1 gave the worst. The radial distortion coefficients
t)



Table 9 Right camera lens distortion parameters

Parameter COL SRE1 SRE2

Δf (px) 1.141 1.244 1.050

±0.468 ±0.968 ±0.442

Δx0 (px) 1.652 1.577 1.601

±0.132 ±0.174 ±0.106

Δy0 (px) 1.451 1.407 1.305

±0.725 ±0.780 ±0.345

k1 (px
−2) −3.34e−7 −3.82e−07 −3.62e−07

±7.45e−09 ±7.71e−09 ±3.84e−09

k2 (px
−4) −1.09e−12 −4.65e−13 −4.46e−13

±9.84e−14 ±1.04e−13 ±7.14e−14

k3 (px
−6) 7.26e−18 4.32e−18 6.54e−18

±4.42e−19 ±4.83e−19 ±3.72e−19
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from COL and SRE1 were similar. However, SRE2 deliv-
ered the best coefficients.
The relative orientation parameters from SRE2 were

the best whilst the ones from COL and SRE1 were simi-
lar to each other. Table 6 shows the total number of the
used stereo points, the number of parameters and the
flop count for each of the auto-calibration algorithm.
COL and SRE1 employed the same number of measure-
ments, as SRE2 used 4.5 times more measurements.
SRE1 and SRE2 estimated the same number parameters,
but COL estimated 7854 more parameters. Even though
SRE2 processed more measurements than COL, it still
used 1000 times less flops since less number of parame-
ters were estimated. Furthermore the accuracy is higher
since more measurements were employed.

Results from road test data
Test results from both the camera auto-calibration and
system calibration using road test data are presented in
this section. The road data were collected by the land
vehicle navigation system developed at the Earth Obser-
vation Laboratory of York University (Qian et al. 2012)
with two newly integrated cameras. The system consists
of two NovAtel OEM GPS receivers, one Crossbow
IMU440CA and the two PointGrey Flea3 cameras as de-
scribed in the lab test section. Two GPS receivers pro-
vided the absolute heading measurements and a third
GPS receiver was used as the base station so that RTK
level GPS positioning accuracy was achieved. The lever-
arm vectors of the GPS receivers and cameras with re-
spect to the IMU unit were measured beforehand at the
accuracy of 0.5cm. The observation rates were set to 1.0,
100 and 7.5 Hz for GPs, IMU and cameras, respectively.
The IMU specification is in Table 7.
The data was collected in Vaughan, Ontario and was

518 s long. Figure 12 shows the top view of the vehicle’s
trajectory, the velocity profile and the attitude profiles.
Table 8 Left camera lens distortion parameters

Parameter COL SRE1 SRE2

Δf (px) −1.651 −1.815 −1.785

±0.468 ±0.961 ±0.458

Δx0 (px) 0.049 0.157 0.178

±0.134 ±0.177 ±0.112

Δy0 (px) −0.245 −0.262 −0.155

±0.756 ±0.819 ±0.452

k1 (px
−2) −3.63e−07 −3.59e−07 −3.46e−07

±7.42e−09 ±7.51e−09 ±3.73e−09

k2 (px
−4) −7.45e−12 −8.61e−13 −6.61e−13

±1.03e−13 ±1.02e−13 ±5.80e−14

k3 (px
−6) 8.02e−18 5.97e−18 6.64e−18

±3.45e−19 ±4.81e−19 ±3.54e−19
One hundred images in the interval shown in Fig. 13
(left) were used to test the camera calibration algo-
rithms. This section of the trajectory was chosen be-
cause the vehicle dynamics favor lever-arm estimation.
Furthermore, the images were highly textured which
could be important in detecting point features. Figure 13
(right) shows the 53rd stereo image with the matched
feature points. Similar to the tests performed in Results
from road test data section, the calibration results from
one COL and two SREs are presented (i.e. still as SRE1
and SRE2). COL and SRE1 estimates were obtained
using the same number of stereo points whilst SRE2
used 5.1 times more measurements. The average per-
centage overlap for all three cases is 73%.

Auto-calibration results
The estimated lens distortion parameters together with
their standard deviations of the left and right cameras
are shown in Tables 8 and 9, respectively. The results
showed the focal length error estimates from COL and
SRE2 were similar, but SRE1 performed the worst. SRE2
estimated the best principal point error, followed by
COL and SRE1. Noticeably, Δx0 is better estimated than
Δy0 because the distribution of the points on the images
in the x component was more varied and thus benefited
the Δx0 estimation. The results showed that the coeffi-
cients k1 and k2 accounted for most of the radial
Table 10 Relative orientation of right camera w.r.t left camera

Parameter COL SRE1 SRE2

bcLR:x mð Þ 0.002 ± 0.001 0.004 ± 0.001 0.003 ± 0.001

bcLR:y mð Þ 0.65 0.65 0.65

bcLR:y mð Þ −0.002 ± 0.001 −0.001 ± 0.001 −0.001 ± 0.001

θccR;x degð Þ 0.250 ± 0.010 0.247 ± 0.014 0.251 ± 0.009

θccR;y degð Þ −0.211 ± 0.003 −0.220 ± 0.004 −0.220 ± 0.003

θccR;z degð Þ −0.093 ± 0.002 −0.092 ± 0.002 −0.091 ± 0.002



Table 13 Difference between the estimated lever-arm and the
measured lever arm components

Measured lever-arm (m) COL (m) SRE1 (m) SRE2 (m)

−0.060 0.023 ± 0.016 0.035 ± 0.026 −0.005 ± 0.013

0.325 0.027 ± 0.019 0.009 ± 0.031 0.006 ± 0.018

−0.050 0.032 ± 0.047 −0.117 ± 0.090 −0.043 ± 0.040

Table 11 Number of points, parameters and flops

COL SRE1 SRE2

Number of stereo points 26,564 26,564 109,652

Number of parameters 9260 617 617

log10 (flops) 13.0 9.0 9.5
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distortion. Their standard deviations were the lowest
from SRE2, while they were similar in COL and SRE1.
Table 10 shows the estimated relative orientation pa-

rameters and their standard deviations. The results
showed that the estimated baseline vectors were simi-
lar. The angles in the y and z components were also
similar, whereas the x component was similar from
COL and SRE2. The worst came from SRE1. Table 11
shows the total number of the used stereo points, num-
ber of parameters and the flop count for each of the
auto-calibration algorithms. COL used 3162 times more
flops than SRE2. The most important finding in the
tests was that despite the fact SRE2 used more mea-
surements; it outperformed COL both in terms of ac-
curacy and computational efficiency.
System calibration results
Table 12 shows the estimated lever-arms, absolute scale
factor and bore-sight angles of the stereo camera system.
The results showed that the lever-arms from COL and
SRE2 were comparable, whereas the one from SRE1 was
the worst. SRE2 estimated the best bore-sight angles
followed by COL and SRE1. The absolute scale factors
were similar in all three calibration results.
The standard deviation of the lever-arm in the z-com-

ponent was almost three times larger than the ones in x
and y components as there was little variation in the ve-
hicle’s pitch angle and the accuracy of the GPS position
was worse vertically than horizontally. The lever-arms
were measured beforehand using a measuring tape at
the accuracy of 0.1cm. Table 13 shows the difference be-
tween the estimated and the measured lever-arms, and
the standard deviations. The differences were within two
Table 12 Lever-arm, Scale and Bore-sight

Parameter COL SRE1 SRE2

labL;x mð Þ −0.037 ± 0.016 −0.025 ± 0.026 −0.065 ± 0.013

labL;y mð Þ 0.352 ± 0.019 0.334 ± 0.031 0.331 ± 0.018

labL;z mð Þ −0.018 ± 0.047 −0.167 ± 0.090 −0.093 ± 0.040

sc 0.983 ± 0.001 0.989 ± 0.001 0.981 ± 0.001

θbc;x degð Þ 90.445 ± 0.010 90.721 ± 0.013 90.654 ± 0.008

θbc;y degð Þ −0.195 ± 0.014 −0.161 ± 0.029 −0.174 ± 0.011

θbc;z degð Þ −90.401 ± 0.031 −90.365 ± 0.054 −90.452 ± 0.024
times the standard deviations (95%) which showed that
the lever-arms were correctly estimated.
Conclusions
This paper presented a novel two-step camera calibration
method in a GPS/INS/Stereo camera integrated kinematic
positioning and navigation system. The first step performs
the camera auto-calibration for a stereo system by
employing two scale-restraint equations to constrain the
matched features from two consecutive stereo pairs. The
lens distortion parameters, the up-to-scale baseline length
and the relative orientation between the two cameras are
estimated using the least-squares method. The second
step performs system calibration where the auto-
calibration estimates are fused with the blended GPS/INS
solution to recover the camera lever-arms, the absolute
scale of the camera and the bore-sight angles. The main
advantage of the proposed novel method lies that it is free
from landmark parameters and results in computation
and memory savings. There are two main drawbacks in
employing the scale-restraint equation over the collinear-
ity equations for stereo auto-calibration. Firstly the accur-
acy cannot be increased by performing loop closures
when the same scene is revisited. Secondly the scale-
restraint equation is highly non-linear and therefore the
LS estimator can diverge if a good approximation of the
parameters is not available.
The results from the simulated and real road test data

were presented and showed that the proposed auto-
calibration method requires less computation resources
to achieve equal or better accuracy than applying the
traditional collinearity equations despite the fact it using
more measurements.
Appendix A
From the principles of vector analysis, any four vectors
a, b, c and d in three-dimensional space can be related
to each other through

a� bð Þ � c� dð Þ ¼ a:c� dð Þb− b:c� dð Þa
¼ a:b� dð Þc− a:b� cð Þd

This implies,
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a:b� dð Þc ¼ a:c� dð Þb− b:c� dð Þaþ a:b� cð Þd
c ¼ ða:c� dÞ

a:b� dð Þb−
ðb:c� dÞ
a:b� dð Þ aþ

ða:b� cÞ
a:b� dð Þd

c ¼ bb−aaþ dd

Where the scalar multipliers a, b and d are

a ¼ ðb:c� dÞ
a:b� dð Þ

b ¼ ða:c� dÞ
a:b� dð Þ

d ¼ ða:b� cÞ
a:b� dð Þ
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