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Adaptive cubature Kalman filter based on
the variance-covariance components
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Abstract

Although the Kalman filter (KF) is widely used in practice, its estimated results are optimal only when the system
model is linear and the noise characteristics of the system are already exactly known. However, it is extremely
difficult to satisfy such requirement since the uncertainty caused by the inertial instrument and the external
environment, for instance, in the aided inertial navigation. In practice almost all of the systems are nonlinear.
So the nonlinear filter and the adaptive filter should be considered together. To improve the filter accuracy, a
novel adaptive filter based on the nonlinear Cubature Kalman filter (CKF) and the Variance-Covariance
Components Estimation (VCE) was proposed in this paper. Here, the CKF was used to solve the nonlinear issue
while the VCE method was used for the noise covariance matrix of the nonlinear system real-time estimation. The
simulation and experiment results showed that better estimated states can be obtained with this proposed
adaptive filter based on the CKF.

Keyword: Adaptive filter, Cubature Kalman filter (CKF), Variance-Covariance Components Estimation (VCE),
Nonlinear system, Noise covariance matrix
Introduction
In modern navigation and data fusion, the Kalman filter
(KF) has become one of the most widely used estimation
methods due to its advantages of being more simple and
useful (Chen 2012; Han & Wang 2012; Feng et al. 2013;
Santos 2015). However, the KF method still has some
limitations (Tang et al. 2014; Wang et al. 2010; Wang
2009). For example, it has been developed on the base of
linear systems while almost all of the systems are non-
linear actually. So if the KF is applied in practice, the
nonlinearity may lead to large errors or even to the
filter divergence. Thus, the nonlinear filters have been a
hot area of the state estimation.
In practical engineering, two nonlinear methods

named the extended Kalman filter (EKF) and the
unscented Kalman filter (UKF) are most widely used
(Gao et al. 2014; Dini et al. 2011; Vaccarella et al. 2013;
Masazade et al. 2012). In the EKF, the nonlinear system
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can be linearized utilizing the Taylor series expansion
for variance propagation while the prediction of the
state vector and measurement vector are conducted
using the nonlinear system (Gao et al. 2014; Arasaratnam
& Haykin 2009). Although this method is used in many
nonlinear systems for its simplicity, the precision is limited
in the systems with strong nonlinearity and the fussy
Jacobian matrix should be calculated which will inevit-
ably increase the computational load. With the
Unscented Transformation (UT), the UKF method can
approximate the mean and the variance of the Gauss-
ian state distribution using the nonlinear function to
avoid the local linearization and the calculation of the
Jacobian matrix effectively (Gao et al. 2014; Dini et al.
2011). However, the covariance matrix sometimes is
easy non-positive in high-dimensional systems which
will lead to filtering divergence.
To solve the above mentioned problems, Arasaratnam

et al. proposed the Cubature Kalman filter (CKF)
method based on the Cubature Transform to conduct
the prediction using the Cubature points which have the
same weight (Arasaratnam & Haykin 2009; Arasaratnam
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& Haykin 2010; Zhang et al. 2015). Similar with UKF,
CKF avoids linearization to the nonlinear system by
utilizing point sets to predict state vectors and covari-
ance matrix. However, CKF has strictly theoretical
derivation based on Bayesian and Spherical-Radial
Cubature principles while UKF does not. In addition,
the point set in CKF is acquired by integration and all
weights are positive values and equal while the weights
in UKF are negative values easily in high dimensional
systems, which will reduce the filtering accuracy and
stability. So the CKF is more widely used in practical to
solve the nonlinear problem.
In above filters, the estimations are the optimal only

when the mathematic model is exactly known and the
system process and measurement noises are the White
Gaussian Noise. However, this cannot easily be satisfied
in practical aided inertial navigation applications, for
example, because of the drift errors of the inertial com-
ponents, the dynamic errors caused by the carrier’s
maneuver, and the existence of the uncertainty in the
external environment (Wang et al. 2010; Jin et al. 2014;
Von Chong & Caballero 2014). The system model and
its associated statistical characteristics of the noises are
obtained based on the priori knowledge, which defin-
itely have some errors compared with the true values.
So the adaptive filter should be considered to improve
the estimated accuracy.
The adaptive filter can estimate and correct the model

parameters and the noise characteristics at the same
time to continually reduce the errors of the state estima-
tion. Then the estimated accuracy can be improved
availably (Hu et al. 2003; Chang & Liu 2015; Mundla
et al. 2012).
At present, there are various adaptive filters. One of

the outstanding adaptive filters named the Sage-Husa
adaptive filter can estimate variance matrix of the
process noise or the one of the observation noise in
real-time when the variance matrix of the observation
noise or the one of the process noise is known (Mundla
et al. 2012). In other words, if we want to estimate the
process (or observation) noise variance matrix with the
Sage-Husa adaptive filter, variance matrix of the observa-
tion noise (or the process noise) should be already
known. Thus, these two variance matrices cannot be
estimated simultaneously. It has limitations when the
process and observation noises are both unknown.
By adjusting or restraining the impacts of the current

observations on the parameter estimation using the fading
factor, an adaptive filter makes full use of the current ob-
servations to improve the filtering accuracy (Chang & Liu
2015). Nevertheless, it is difficult to obtain the optimal
fading factor and the computational complexity will ac-
cordingly be increased as well. Furthermore, the weights
of the a-priori reliable information would be decreased to
a certain extent if the current observation is abnormal,
and then the filtering accuracy would also be degraded.
To estimate the parameters of the system correctly,

the weights of different observations should be known.
Thus, the Variance-Covariance Components Estimation
(VCE) was proposed (Wang et al. 2010; Moghtased-Azar
et al. 2014). At present, various VCE methods have
widely be used in statistics and geodesy. And one of the
famous VCE methods is a posteriori VCE method after
Helmert, in which the weights of different observations
can be calculated by the adaptive iteration. Since the
matrix will be negative sometimes during the calcula-
tion, some improved methods were proposed. Wang
et al. proposed an adaptive Kalman filter (AKF) based on
the VCE method, and verified its effectiveness using the
actual experiments (Wang et al. 2010; Wang 2009; Wang
et al. 2009). Although the adaptive filter based on the
VCE has many advantages in the filter estimations, its
application in nonlinear systems has rarely been studied.
Thus, by combining the CKF and the VCE method, an

improved adaptive filter was proposed in this paper.
Since the adaptive filter and the nonlinear filter were en-
gaged at the same time, this novel method can not only
estimate the statistical property of the system’s noise,
but also be applied in various nonlinear systems. Hence,
the accuracy and the applicability of the new filter can
be further improved. The rest of this paper was orga-
nized as follows. The description of the CKF and the
VCE method was presented in Basic Knowledge. An
improved adaptive filter based on the CKF proposed
the novel adaptive filter based on the CKF. Numerical
examples and experiment along with specific analysis
were given in Simulations and Experiments. Conclusions
concluded this manuscript.

Basic knowledge
Adaptive filter based on the VCE method
The adaptive filter based on the VCE method can estimate
the variance components of the process noise and the
measurement noise vectors in real time using the residual
vectors to decompose the system innovation vector
(Wang et al. 2010; Wang 2009; Moghtased-Azar et al.
2014). On the basis of the estimated variance components,
the weighting matrices of the process noise and the meas-
urement noise vectors can be adjusted and then their ef-
fects on the state vector can be adjusted accordingly.
Now under the consideration of the standard system

model, the state and measurement equations are:

x kð Þ ¼ Φ k; k−1ð Þx k−1ð Þ þ Γ kð Þw kð Þ
z kð Þ ¼ H kð Þx kð Þ þ Δ kð Þ

�
ð1Þ

where x(k) and z(k) are the state vector and the measure-
ment vector, respectively; Φ(k, k − 1), Γ(k) and H(k) are
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the state-transition matrix, the coefficient matrix of the
process noise vector and the design matrix, respectively;
w(k) and Δ(k) denote the process noise vector and the
measurement noise vector, respectively. Further, w(k)
and Δ(k) are the zero mean Gaussian noises:

w kð ÞeN 0; Q kð Þð Þ
Δ kð ÞeN 0; R kð Þð Þ

�
ð2Þ

where Q(k) and R(k) are positive definite matrices.
Thus, the two-step update process of the Kalman filter

is as follows:
The time update:

x̂ k=k−1ð Þ ¼ Φ k; k−1ð Þx̂ k−1ð Þ
PXX k=k−1ð Þ ¼ Γ kð ÞQ kð ÞΓT kð Þ
þΦ k; k−1ð ÞPXX k−1ð ÞΦT k; k−1ð Þ

ð3Þ

The measurement update:

x̂ kð Þ ¼ x̂ k=k−1ð Þ þ G kð Þd kð Þ
PXX kð Þ ¼ E−G kð ÞH kð Þ½ �PXX k=k−1ð Þ ð4Þ

where G(k) is the gain matrix and d(k) is the system
innovation vector:

G kð Þ ¼ PXX k k−1jð ÞHT kð ÞPdd kð Þ
d kð Þ ¼ z kð Þ−H kð Þx̂ k k−1jð Þ

Pdd kð Þ ¼ H kð ÞPXX k k−1jð ÞHT kð Þ þ R kð Þ

ð5Þ

When Q(k) and R(k) are already known, the estimated
state vector is optimal. However, in practice they cannot
easily be obtained. So it would be great if they could be
estimated in real time in the adaptive filter based on the
VCE method.
There exist three groups of stochastic information that

is associated with the estimation of the state vector: the
observation noise vector Δ(k), the system process noise
w(k) and the noise on the predicted state vector x̂
k=k−1ð Þ brought by x̂ k‐1ð Þ though the propagation of
{Δ(1),⋯,Δ(k − 1)} and {w(1),⋯,w(k ‐ 1)}. Thus, accord-
ing to noise sources, we can define three independent
(pseudo-)observation groups as follows (Wang 2009):

lx kð Þ ¼ Φ k; k−1ð Þx̂ k−1ð Þ
lw kð Þ ¼ w0 kð Þ
lz kð Þ ¼ z kð Þ

ð6Þ

where lx(k) is the pseudo-observation related to the pre-
dicted state vector, lw(k) is the pseudo-observation
related to the system process noise, and lz(k) is the
pseudo-observation related to the observation noise.
Using their residual equations, the system in Eq. (1)

can be rewritten:
vlx kð Þ ¼ x̂ kð Þ þ Γ kð Þŵ k‐1ð Þ−lx kð Þ
vlw kð Þ ¼ ŵ k‐1ð Þ−lw kð Þ
vlz kð Þ ¼ Η kð Þx̂ kð Þ−lz kð Þ

ð7Þ

with their measurement variance matrices as follows:

Plxlx kð Þ ¼ Φ k; k−1ð ÞPxx k−1ð ÞΦT k; k−1ð Þ
Plwlw kð Þ ¼ Q kð Þ
Plzlz kð Þ ¼ R kð Þ ð8Þ

So we can estimate the covariance matrix of the sys-
tem as long as we calculate the covariance matrix of the
residual vectors.
According to the steps of the Kalman filter, the estima-

tions of the residual vectors can be calculated by the
equation (9):

vlxlx kð Þ ¼ Plxlx kð ÞP−1
XX k k−1jð ÞG kð Þd kð Þ

vlwlw kð Þ ¼ Q k−1ð ÞΓT k−1ð ÞP−1
XX k k−1jð Þ⋅

G kð Þd kð Þ
vlzlz kð Þ ¼ H kð ÞG kð Þ−Ef gd kð Þ

8>>>><>>>>: ð9Þ

And then the corresponding variance matrices are as
below:

Pvlxlx kð Þ ¼ Φ k−1ð ÞPXX k−1ð ÞΦT k−1ð ÞHT kð Þ⋅
P−1
dd kð ÞH kð ÞΦ k−1ð ÞPXX k−1ð ÞΦT k−1ð Þ

Pvlwlw
kð Þ ¼ Q k−1ð ÞΓT k−1ð ÞHT kð ÞP−1

dd kð Þ⋅
H kð ÞΓ k−1ð ÞQ k−1ð Þ

Pvlz lz kð Þ ¼ E−H kð ÞG kð Þf gR kð Þ

8>>>>>>><>>>>>>>:
ð10Þ

Here the innovation vector is epochwise projected into
three residual vectors associated with the three groups
of the measurements. Hence, we can estimate the vari-
ance factors.
Assume that all components in lz(k) and lw(k) are uncor-

related, so both of the R(k) and Q(k) become diagonal. In
this case, the redundancy index of each measurement
noise factor is given by (Wang 2009)

rzi kð Þ ¼ 1− H kð ÞG kð Þf gii ð11Þ

Similarly, the redundancy index of each process noise
factor is equal to

rwi kð Þ ¼ Q kð ÞΓT kð ÞHT kð ÞP−1
dd kð Þ⋅�

H kð ÞΓ k−1ð Þ�ii
ð12Þ

Furthermore, the individual group redundancy contri-
butions, or the total group redundant indexes, are equal
to (Wang et al. 2010; Wang 2009; Wang et al. 2009):
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rx kð Þ ¼ trace Φ k−1ð ÞPXX kð ÞΦT k−1ð Þ⋅�
HT kð ÞP−1

dd kð ÞH kð Þ�
rw kð Þ ¼ trace Q kð ÞΓT kð ÞHT kð ÞP−1

dd kð Þ⋅�
H kð ÞΓ k−1ð Þ�

rz kð Þ ¼ trace E−H kð ÞG kð Þ½ �

8>>>><>>>>: ð13Þ

On the basis of the Herlmet VCE method, the individ-
ual group variance factors of unit weight are estimated
by the residual vector and the corresponding redundant
index as follows:

σ̂ 2
0g kð Þ¼ vTg Plglg kð Þvg kð Þ

rg kð Þ g ¼ x;w; zð Þ ð14Þ

Thus, at time k, the individual variance factors of lz(k)
can be calculated by:

σ̂ 2
zi kð Þ ¼ v2zi kð Þ

rzi kð Þ ð15Þ

And the covariance matrix of the measurement noise
is as follows:

R kð Þ ¼
σ̂ 2
z1 kð Þ

⋱
σ̂ 2
zp kð Þ

24 35 ð16Þ

Similarly, the variance factors of lw(k) and the variance
matrix Q(k) can be calculated by the equations (17) and
(18):

σ̂ 2
wj

kð Þ ¼
v2wj

kð Þ
rwj kð Þ ð17Þ

Q kð Þ ¼
σ̂ 2
w1

kð Þ
⋱

σ̂ 2
wm

kð Þ

24 35 ð18Þ

CKF algorithm
Since the CKF is not only simple and easy to be imple-
mented, but also high precise and convergent well, it is
widely used in nonlinear estimations.
Let us consider a nonlinear state-space model:

xk ¼ f xk−1ð Þ þ wk−1

zk ¼ h xkð Þ þ Δk

(
ð19Þ

where xk and zk are the state vector and the measure-
ment vector, respectively, f(⋅) and h(⋅) are the nonlinear
state and measurement vector functions; w ∼N(0, Q)
and Δ ∼N(0, R) represent the process noise and the
measurement noise vectors, respectively.
For this nonlinear system, 2n Cubature points which are

equal of weight were selected to calculate the Gaussian
distribution, and then the CKF can be implemented
through the time and measurement updates. And the
cubature points are set as:

ξ i ¼
ffiffiffiffiffi
2n
2

r
1½ �i

ωi ¼ 1
2n

8><>: ; i ¼ 1; 2;⋯; 2n ð20Þ

where n is the dimension of the state vector.
And the estimation process is as below (Arasaratnam

& Haykin 2009; Arasaratnam & Haykin 2010):
The time update:

Pk−1 k−1j ¼ Sk−1 k−1j STk−1 k−1j ð21Þ
Xi;k−1 k−1j ¼ Sk−1 k−1j ξ i þ x̂k−1 k−1j ð22Þ

X�
i;k k−1j ¼ f Xi;k−1 k−1j

� � ð23Þ

x̂k k−1j ¼ 1
2N

X2N
i¼1

X�
i;k k−1j ð24Þ

Pk k−1j ¼ 1
2N

X2N
i¼1

X�
i;k k−1j X�T

i;k k−1j −x̂k k−1j x̂Tk k−1j þ Qk−1 ð25Þ

The measurement update:

Pk k−1j ¼ Sk k−1j STk k−1j ð26Þ

Xi;k k−1j ¼ Sk k−1j ξ i þ x̂k k−1j ð27Þ

Yi;k k−1j ¼ h Xi;k k−1j
� � ð28Þ

ẑk k−1j ¼ 1
2N

X2N
i¼1

Yi;k k−1j ð29Þ

Pzz
k k−1j ¼ 1

2N

X2N
i¼1

Yi;k k−1j YT
i;k k−1j −ẑk k−1j ẑTk k−1j þ Rk ð30Þ

Pxz
k k−1j ¼ 1

2N

X2N
i¼1

Xi;k k−1j YT
i;k k−1j −x̂k k−1j ẑTk k−1j ð31Þ

And the gain matrix is:

Kk ¼ Pxz
k k−1j Pzz

k k−1j
� 	−1

ð32Þ

The estimation of the state vector can be obtained:

x̂k kj ¼ x̂k k−1j þ Kk zk−ẑk k−1j
� � ð33Þ

where dk = zk − ẑk|k − 1 is the system innovation vector of
the nonlinear system.
The variance matrix of the estimated state vector is:

Pk kj ¼ Pk k−1j −KkP
zz
k k−1j KT

k ð34Þ
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Methods
An improved adaptive filter based on the CKF
To solve the nonlinear problem and improve the sto-
chastic model simultaneously, we here proposed a new
improved adaptive filter by combining the CKF and the
VCE adaptive method.
With the nonlinear system described in Eq. (19), three

pseudo measurement groups are defined as follows:

lx kð Þ ¼ f x̂k‐1 k‐1j
� �

lw kð Þ ¼ wk−1

lz kð Þ ¼ zk

8><>: ð35Þ

The residual equation of the nonlinear system is:

vlx kð Þ ¼ x̂k kj þ ŵk−1−lx kð Þ
vlw kð Þ ¼ ŵk−1−lw kð Þ
vlz kð Þ ¼ h x̂k kj

� �
−lz kð Þ

8><>: ð36Þ

According to the steps of the CKF, the equations (9)
and (10) can be rewritten as:

vlxlx kð Þ ¼ Plxlx kð Þ Pk k−1j
� �−1

Kkdk

vlwlw kð Þ ¼ Qk−1 Pk k−1j
� �−1

Kkdk

vlzlz kð Þ ¼ Pxz
k k−1j

� 	T
Pk k−1j
� �−1

Kk−E

 �

dk

8>>>><>>>>: ð37Þ

The corresponding variance matrices are:
Fig. 1 MSEs of 20 times of Monte Carlo simulations
Pvlxlx kð Þ ¼ Plxlx kð Þ Pk k−1j
� �−1

Pxz
k k−1j Pzz

k k−1j
� 	−1

⋅

Pxz
k k−1j

� 	T
Pk k−1j
� �−1

Plxlx kð Þ
Pvlwlw

kð Þ ¼ Qk−1 Pk k−1j
� �−1

Pxz
k k−1j Pzz

k k−1j
� 	−1

⋅

Pxz
k k−1j

� 	T
Pk k−1j
� �−1

Qk−1

Pvlzlz kð Þ ¼ E− Pxz
k k−1j

� 	T
Pk k−1j
� �−1

Kk


 �
R kð Þ

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð38Þ

The individual group redundant indices are equal to:

rx kð Þ ¼ trace Plxlx kð Þ Pk k−1j
� �−1

Pxz
k k−1j ⋅

h
Pzz
k k−1j

� 	−1
Pxz
k k−1j

� 	T
Pk k−1j
� �−1�

rw kð Þ ¼ trace Qk−1 Pk k−1j
� �−1

Pxz
k k−1j Pzz

k k−1j
� 	−1

⋅


Pxz
k k−1j

� 	T
Pk k−1j
� �−1�

rz kð Þ ¼ trace E− Pxz
k k−1j

� 	T
Pk k−1j
� �−1

Kk


 �

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ð39Þ

Here, the covariance factors and the variance matrices
for the nonlinear system can be calculated after the
equations (15) ~ (18).

Results and discussion
Simulations and experiments
In order to show the advantages of the improved CKF,
this section presents the solution comparison between
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the normal and the improved CKF methods through
two nonlinear models: a bearing-only tracking model
and a target tracking model, using the simulated data
against their known reference solutions. A further ex-
periment with the real data was also conducted and
summarized.

Bearing-only tracking method
In the bearing-only tracking model, there are two states.
Its nonlinear model was set as below (Zhang et al. 2015;
Julier & Uhlman 1997; Kotecha & Djuric 2003):

xk ¼ 0:9 0
0 1


 �
xk−1 þ wk−1 ð40Þ

where the state vector is x ¼ x1 x2½ �T ¼ s t½ �T ,
which are the position of a moving carrier in the 2D
Cartesian coordinate system. The process noise is wk ~
N(0,Q) with

Q ¼ 10−3 � 1 0
0 3


 �
The observation sensor is an angle observer and its co-

ordinate value is (cos(k), sin(k)) at k moment. And the
measurement equation is as follows:

zk ¼ tan−1
tk− sink
sk− cosk

� 

þ vk ð41Þ

where the measurement noise is vk~N(0, R) with R = 0.005.
The initial state vector and its covariance matrix were

given as:

x0 ¼ 20 5½ �T

P0 ¼ 0:1 0
0 0:1


 �
The initial variance matrices for the process noise

vector and the measurement noise vector were
assigned to be 3 times and 4 times of their true values,
respectively. The total time duration of the simulation
is 500 s. To compare the performance, the results of
Fig. 2 PDF of state errors with normal CKF
the normal CKF were compared with the ones from
the improved adaptive CKF filter. With 20 times of
Monte Carlo simulations for this same 500-s long sim-
ulated data, the comparison of the mean square errors
(MSE) of the estimated states from the normal CKF
and the improved CKF were shown in Fig. 1. Figures 2
and 3 described the probability distribution function
(PDF) of the estimated states with these two methods,
respectively.
In order to evaluate the performance of the im-

proved CKF, the PDFs of the estimated state errors
resulted from the simulation data were calculated
(Figs. 2 and 3), which showed that the PDF with the
improved CKF much better fits the normal distribu-
tion which tells that the estimated states were more
close to the true states than the once from the normal
CKF. So the proposed novel method can estimate the
stochastic model more accurately. By the way, from
the results shown in Fig. 1, the MSEs of estimated
states with the normal CKF and the improved CKF are
not that different, but the results from the improved
CKF method behaved better, although one should not
expect to have the smaller variances if the errors are
distributed more reasonably in general.
Target tracking method
In this 2D tracking model, there are five states with the
nonlinear model below (Arasaratnam & Haykin 2009):
Table 1 Simulation Parameters

Parameters Set values

TΔ 1s

q1 0.1m2/s3

q2 1.75 × 10− 4rad2/s3

σr 10m

σθ
ffiffiffiffiffi
10

p
mrad

Q0 3 Q0

R0 3 R0



Fig. 4 RMSEs of 20 Monte Carlo simulations

Fig. 6 PDF of estimated state errors with improved CKF
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xk ¼

1
sinΩTΔ

Ω
0

‐1þ cosΩTΔ

Ω
0

0 cosΩTΔ 0 ‐sinΩTΔ 0

0
1‐cosΩTΔ

Ω
1

sinΩTΔ

Ω
0

0 sinΩTΔ 0 cosΩTΔ 0
0 0 0 0 1

0BBBBBBB@

1CCCCCCCA
xk−1 þ rk

ð42Þ

where the state vector is x ¼ x _x y _y Ω½ �T , in
which (x, y), _x; _y:ð Þ and Ω are the position, the velocity
and the angular velocity of the carrier, respectively, and
TΔ represents the sampling interval. The process noise is
rk ∼N(0, Q) with

Q ¼ diag q1M q1M q2TΔ½ �ð Þ

M ¼ T 3
Δ=3 T2

Δ=2
T 2

Δ=2 TΔ


 �

The carrier was observed in real time, and the obser-
vations include the distance sk and the azimuth θk from
the observation system to the carrier. So, the observation
equation is:
Fig. 5 PDF of estimated state errors with normal CKF
sk
θk

� 

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2k þ y2k

q
tan−1

yk
xk

� 
0B@
1CAþ vk ð43Þ

where vk is the observation noise vector, vk ∼N(0, R) with
R ¼ diag σ2

r σ2θ
� �� �

.
In this subsection, the simulation parameters are set as

in Table 1.
The initial state

x0 ¼ 1000m; 300m=s; 1000m; 300m=s;−3∘=s½ �T

and the associated covariance

P0 ¼ diag 100m2; 100m2; 100m2; 100m2; 100mrad2=s2
� �� �

The root mean square error (RMSE) was used here as
the evaluation criteria. So the RMSEs of the position, the
velocity and the angular velocity of the carrier can be
calculated after equation (44).
Fig. 7 Experiment area



Table 2 Performance Parameters of FOG

Parameters Settings

Dynamic Range ± 100∘/s

Bias Stability ≤ 0.01∘/h

Bias Repeatability ≤ 0.01∘/h

Angle Random Walk (ARW) ≤ 0.005∘/h

Scale Factor Error ≤ 20ppm

Temperature Range −40 °C ~ +60 °C

Fig. 8 Installation diagram in experiment
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RMSEpos kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nexp

Xnexp
n¼1

xnk−x
n
k=k

� 	2
þ ynk−y

n
k=k

� 	2
� 
vuut

RMSEvel kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nexp

Xnexp
n¼1

_xnk− _x
n
k=k

� 	2
þ _ynk− _y

n
k=k

� 	2
� 
vuut

RMSEΩ kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nexp

Xnexp
n¼1

Ωn
k−Ω

n
k=k

� 	2

vuut
ð44Þ

where nexp is the times of the Monte Carlo simulations.
The comparison between the RMSE of the estimated

position, velocity and angular rate with normal CKF and
the improved CKF were shown in Fig. 4. Figures 5 and 6
described the PDF of the estimated position, velocity
and angular rate with these two methods, respectively.
From above, the RMSEs are almost the same with

these two methods. And the PDFs with the improved
CKF are much more fits the standardized normal distri-
bution curve too, which is similar with Bearing-only
tracking method. Thus, the feasibility and the superiority
of the improved adaptive filter based on the CKF can be
verified.

Experiment and analysis
To verify the effectiveness of the novel adaptive filter
based on CKF and VCE, an experiment with real data
from practice was carried out. The experiment was taken
in Zhanjiang area, China (shown in Fig. 7). And this ship
sails directly with niform velocity fristly, then turns back
(the heading changes 180 deg), then sails directly with
niform velocity again, then turns back again, and then
Table 3 Performance Parameters of accelerometer

Parameters Settings

Measuring Range ± 20g

Bias Stability ≤ 0.05mg

Bias Repeatability ≤ 0.05mg

Velocity Random Walk (VRW) ≤ 0.01mg

Resolution ≤ 5μg

Scale Factor Error ≤ 30ppm
sails like this repeatedly. One Inertial Measurement Unit
(IMU) developed by our own lab, which is composed of
three Fiber Optic Gyroscopes (FOG) and three quartz
flexible accelerometers, was used to acquire the ship’s in-
ertial information. The performance parameter of the
FOG and the accelerometer are listed in Tables 2 and 3,
respectively. And the IMU was installed on the right side
of the ship’s deck, shown as Fig. 8. The sampling fre-
quency and total time of this experiment are 100Hz and
900 s, respectively.
With the proposed algorithm, the comparison of the

estimated trajectory is as follows. In Fig. 9, the red solid
line is the estimated trajectory from the improved CKF
based on the VCE while the blue dash-dot line is the es-
timated trajectories with the normal CKF, respectively.
And the celeste diamond indicates the initial position.
From the above figure, we can see that the trajectory

can be both estimated availably with the improved CKF
and normal CKF. Since we don’t have the true trajectory,
the PDFs cannot provide here. It still can verify the feasi-
bility of the improved adaptive filter based on CKF.

Conclusions
This paper proposed a novel adaptive filter based on the
VCE adaptive method and the nonlinear CKF method to
improve the stochastic model due to the unknown sys-
tem noises in the nonlinear system. By utilizing the
frame structure of the nonlinear CKF, this proposed
method can estimate the variances of the process noises
and the measurement noises through variance compo-
nent estimations in real time, describing the system
more accurately. And the simulation and experiment re-
sults and the comparisons showed that the noise’s
Fig. 9 Comparison of the estimated trajectory
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characteristics can be estimated effectively with the im-
proved adaptive filter based on the CKF and VCE.
Therefore, the effectiveness and superiority of the im-
proved adaptive filter can be proved.
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