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Abstract

WiFi and Bluetooth are two most commonly used short range wireless communication technologies. Recent years,
with increasing number of WiFi and Bluetooth mobile terminals, tags, and other devices, a demand for integration
and coexistence of these two technologies including their positioning function is booming. In this paper, we firstly
investigate the interferences between WiFi and Bluetooth signals from the signal and protocol perspectives.
Secondly, the principle of fingerprinting approach for WiFi positioning is introduced. In order to evaluate the
performance of WiFi fingerprinting coexisted with Bluetooth, both occurrence-based and Weibull-based approaches
are utilized for generating the database. Field tests present the interference in the WiFi and Bluetooth coexistence
environments. A WiFi mobile device with a Bluetooth device nearby obtains poor positioning results due to the
interference. Weibull-based database has more robust performance than occurrence-based database in the
coexistence environments.
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Introduction
In the fast growing mobile device market, the location
capability has become one of the most demanded fea-
tures. To address the location capability, an increasing
number of research focus on positioning and naviga-
tion technologies for both outdoor and indoor
environments. The Global Navigation Satellites
Systems (GNSS) greatly enrich the end users’ outdoor
activities by mobile devices. However, the degraded
areas e.g. indoors and urban canyon are still
challenges for satellite based positioning technologies
because of well known problems such as the weak
signal or non line-of-sight (NLOS) conditions between
mobile users and satellites.
In order to solve the problem of positioning and

navigation in GNSS-degraded or denied areas, diverse
technologies are broadly researched (Kraemer and
Eisfeller, 2009). Most research topics focus on high-

sensitivity GNSS (Syrjärinne, 2001), optical navigation
systems (Mulloni et al., 2009, Rouzaud and Skaloud,
2011, Zhou et al., 2015), acoustic solutions (Priyantha et
al., 2000, Jiang et al., 2015)0, WiFi (Bahl and
Padmanabhan, 2000), Bluetooth (Pei et al., 2010a, Pei et
al., 2010b, Pei et al., 2010c, Chen et al., 2011a, Chen et
al., 2012a, Chen et al., 2013), ZigBee (Sugano et al.,
2006), Ultra Wide Band (Pahlavan et al., 2006), cellular
networks (Syrjärinne, 2001), RFID (Hightower et al.,
2000), magnetic localization (Storms, 2010), inertial
measurement units (Foxlin, 2005 and Chen et al., 2010),
signals of opportunity (Mathews et al., 2011, Chen et al.,
2012b, Pei et al., 2016), dead reckoning approaches (Pei
et al., 2011c, Chen et al., 2011c, Pei et al., 2012a, Pei et
al., 2013, Qian et al., 2015a, Qian et al., 2015b), and also
hybrid solutions (Chen et al., 2009, Pei et al., 2009,
Pahlavan et al., 2010, Liu et al., 2010, Chen et al., 2011b,
Kuusniemi et al., 2012, and Liu 2012a, Liu et al., 2012b).
RF-based technologies, such as WiFi, Bluetooth,

cellular network, and RFID, are the highest potential
alternatives to positioning in degraded environments
because of the existing RF infrastructures. The first well-
known WiFi-based positioning system, namely RADAR
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(Bahl and Padmanabhan, 2000), utilizes kNN positioning
algorithm to compute the location of a mobile device
based on radio signal strength (RSS) from visible ac-
cess points (APs) nearby. Using WiFi RSSIs, Ekahau
(Ekahau Inc, 2017) provides an easy and cost-effective
solution for locating people, assets, inventory and
other objects. Similar to the Ekahau system based on
specific RF tags, the Active Badge (Want et al., 1992)
system uses ceiling-mounted infrared sensor detectors
to detect signals from a mobile active badge. Place Lab
(Schilit et al., 2003) combines Wi-Fi, GSM and
Bluetooth devices as global beacons. Chen et al. (Chen
et al., 2009) proposes a multi-network approach to im-
prove the availability and reliability of navigation and
positioning. However, the deployment of diverse wire-
less devices operating in the 2.4 GHz unlicensed band,
is met with growing concerns about signal interference
and performance degradation. Pei et al., (2012b)
present the preliminary results of WiFi positioning
with Bluetooth interferences. In this paper, we will
evaluate the performance of fingerprinting-based WiFi
positioning in Bluetooth and WiFi coexistence
environments. Instead of using the conventional
occurrence-based database, we propose the Weibull-
based fingerprint database which has more robust
performance when the WiFi spectrum is affected by
coexisted Bluetooth signals.
We organize this paper as follows: first of all, we will

investigate the causes of interference from WiFi and
Bluetooth protocol perspective in Section 2. Then, we
Then, we present two types of fingerprint databases for
WiFi positioning in Section 3. Section 4 describes the
algorithms for positioning based on the fingerprint
database. In Section 5, we conduct several experiments
to evaluate the WiFi positioning performance in
Bluetooth rich environments. Finally, concluding
remarks and discussions are given in Section 6.

Interference analysis
Interferences within 2.4 GHz band bring growing
concerns in wireless communication society. The inter-
ference not only exists within the same wireless technol-
ogy but also among different signal sources sharing the
same band. We will discuss the interferences related to
WiFi and Bluetooth in this section.

802.11 WiFi
The IEEE 802.11 family e.g. IEEE 802.11b and 802.11 g/n
protocols are the most widely used wireless local area net-
work technologies nowadays. They operate in the indus-
trial, scientific and medical (ISM) radio bands of 2.4GHz.
802.11b and 802.11 g/n control their interference and sus-
ceptibility to interference by using direct-sequence spread
spectrum (DSSS) and orthogonal frequency-division

multiplexing (OFDM) signaling methods, respectively.
The 2.4 GHz band is divided into 14 channels spaced
5 MHz apart, beginning with channel 1, which is centered
on 2.412 GHz. The bandwidth of each channel is
22 MHz as shown in Fig. 2. It means that a channel
will be interfered by two nearest channels from either
side. With the increasing distribution density of WiFi
devices in a limited space, interference occurs because
of the channels overlapping. The top image of Fig. 1
shows the interference from the overlapped channels
of 802.11b. Compared to the case shown in the top
image, the interference is reduced significantly in the
bottom image of Fig. 1 since we allocate 802.11b WiFi
APs’ channels at No. 1, 6, and 11, and 802.11 g/n WiFi
APs’ channels at No. 1 and 13. Therefore, to improve
the throughput of WiFi communication in a target
area, we recommend assigning an AP’s channel at No.
1, 6, 11, or 14 for 802.11b and No. 1, 5, 9, or 13 for
802.11 g/n, respectively, if the number of visible APs
in the area are less than five. Otherwise, the interfer-
ence is unavoidable.

Bluetooth
Bluetooth, a technology with low power consumption
for short-range wireless data and voice communication,
also works in the 2.4 GHz ISM band and share spectrum
with WiFi. Bluetooth has been utilized in the communi-
cation and proximity market for a long time. As widely
supported by mobile devices, Bluetooth is a potential
technology to become an alternate for indoor position-
ing. The effective range of the radio signal of a standard
Class 1 Bluetooth device is up to 100 m, while that for
the Class 2 device is about 20-30 m according to the
specifications of Bluetooth 2.0.
Bluetooth and WiFi both operate in the 2.4 GHz

ISM band and share spectrum, as shown in Fig. 2.
These technologies will often be located in close phys-
ical proximity to another and sometimes these two
types of networks may even overlap each other.
Figure 3 gives a scenario of Bluetooth interfering with
a WiFi device. A possible way whereby Bluetooth de-
vices are able to avoid interference from other wireless
devices is through a technique known as spread-
spectrum frequency hopping. By using the “hopping”
method, a device will use one of 79 different and ran-
domly chosen frequencies within an assigned range.
The device frequently changes frequencies from one to
another one with 1600 times per second in a con-
nected state and 3200 times per second in an inquiring
state. As a result, more devices can use a portion of
the radio spectrum. The risk of a device like WiFi-
enabled device interfering with Bluetooth devices is
minimized, since any interference on a specific
frequency will last for only a fraction of a second.
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However, on the other hand, WiFi still suffers from the
hopping interference of Bluetooth as shown in Fig. 3.
The spectrum with narrow bandwidth is from
Bluetooth and the spectrum with wider bandwidth is
WiFi signal centered at channel 11. The WiFi
spectrum is corrupted by the Bluetooth which keeps
hopping from channel 1 to 79.
Bluetooth version 1.2 and afterwards enable an en-

hanced technology called Adaptive Frequency Hopping

(AFH) to mitigate the interference in a coexistence en-
vironment. AFH allows Bluetooth devices to measure
the quality of the wireless signal and then determine if
there are bad channels present on specific frequencies
due to interference from other wireless devices. As
shown in Figs. 1 and 4, if bad channels are present on
a specific frequency, the Bluetooth device will adjust its
hopping sequence to avoid them. As a result, the Blue-
tooth connection is stronger, faster, and more reliable.

Fig. 2 WiFi and Bluetooth channels in the 2.4 GHz ISM band

Fig. 1 Frequency spectrum of WiFi channel allocations
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Meanwhile, the throughput of WiFi networks is also im-
proved without Bluetooth interfering. Unfortunately, the
up-to-date version of AFH can merely support Bluetooth
communication with an established connection.
Therefore, in Bluetooth rich environments, WiFi sig-

nals might be interfered by nearby Bluetooth devices.
In consequence, the interference will effect on both
fingerprinting generation and positioning results of a
fingerprinting-based WiFi positioning solution. During
the phase of generating a fingerprint database, the in-
band interference e.g. Bluetooth signals disturb the
WiFi RSSI readings, which may distort the signal dis-
tributions in the fingerprint database and decrease the
positioning accuracy.
The WiFi access points might be missed by a mobile

device because the mobile device does not capture the
signals broadcasted by the access points during a scan-
ning cycle defined by the WiFi chipset in the mobile
device. With the increasing number of APs in range or
coexisted with the devices working at the similar fre-
quency as WiFi, the cases of missing WiFi APs will in-
crease. In this paper, we denote the miss-scan rated as
a term to evaluate the missing times during a specific
interval of WiFi scanning.

Methods
To maximize the reliability of WiFi positioning in com-
plex signal environments, the fingerprinting algorithm
must be carefully designed to discover a situation in

which some of the received signal strength measure-
ments may be miss-scanned because of the prevailing
interference. In this paper, occurrence-based fingerprint
database and Weibull-based fingerprint database are
implemented.

Occurrence-based fingerprint database
The most common observation in WiFi positioning solu-
tions is RSSI, which is an indication of a power level re-
ceived by an antenna. In principle, the RSSI observation
can refer to the distance between a WiFi access point and
a WiFi terminal. This distance-RSSI relationship can be
further used for triangulating a terminal’s position on the
condition that the terminal obtains RSSIs from at least
three different access points. In practical, however, the
interference and non-line-of-sight (NLOS) make the
distance-RSSI relationship hard to precisely model. In-
stead of using the triangulation solution based on
distance-RSSI relationship directly, the fingerprinting is
more a popular approach within a specific space.
During the phase of generating a WiFi fingerprint

database, a targeted area is divided into a number of
grids. The center of each grid is considered as a refer-
ence point. The coordinates of the reference points
(xn, yn) are determined in advance. The RSSI measure-
ments at each reference point from all “visible” WiFi
APs are collected and stored as fingerprints in the
database. At each reference point, the RSSI probability
distributions of all WiFi APs are stored.
At each reference point, the RSSI probability distri-

butions of all APs are stored. If we denote the finger-
print for the i-th reference point as Ri, then, we have

Ri ¼

P A1O1jRið Þ P A2O1jRið Þ ⋯ P AkO1jRið Þ
P A1O2jRið Þ P A2O2jRið Þ ⋯ P AkO2jRið Þ

⋮ ⋮ ⋱ ⋮

P A1OvjRið Þ P A2OvjRið Þ ⋯ P AkOvjRið Þ

2
6664

3
7775

ð1Þ

where A stands for the AP, while Orefers to the RSSI
observation.

Fig. 3 A scenario of Bluetooth interfering with a WiFi device

Fig. 4 Adaptive Frequency Hopping (AFH)

Pei et al. The Journal of Global Positioning Systems  (2017) 15:3 Page 4 of 12



In the occurrence-based fingerprinting approach, the
probability of a RSSI measurement On which is collected
from the AP Am at the reference point Ri can be
expressed as (Pei et al., 2010b)

P AmOnjRið Þ ¼ COn

Ni
ð2Þ

whereCOn is the number of occurrences that the RSSI
observation On appeared in the training data set of the
i-th reference point. Here Niis the total number of
training samples collected at the i-th reference point.
The entire fingerprint database is expressed as

D ¼ R1;R2 ;…;Rw½ � ð3Þ
whereW is the maximum number of the reference points
in the radio map.
To speed up the computation process, a bin-based

solution is adopted. The signal strength distribution is
divided into p bins. The fingerprints for the i-th
reference point can be redefined as

Ri ¼

P A1B1jRið Þ P A2B1jRið Þ ⋯ P AkB1jRið Þ
P A1B2jRið Þ P A2B2jRið Þ ⋯ P AkB2jRið Þ

⋮ ⋮ ⋱ ⋮

P A1BpjRi
� �

P A2BpjRi
� �

⋯ P AkBpjRi
� �

2
6664

3
7775

ð4Þ
In the occurrence-based database, at the i-th reference

point, the probability of the RSSI measurements within
the bin Bn for AP Am can be expressed as

P AmBnjRið Þ ¼
Xj<En

j¼En−1

COj

Ni
ð5Þ

where En − 1 and En are the left and right edges of bin Bn

respectively. COj stands for the number of occurrences
that the value of the RSSI measurement appeared within
the range of [En − 1, En). All the RSSI measurements in
the bin Bnare cumulated for counting the occurrence
probability.

Weibull-based fingerprint database
As the example shown in Fig. 3, WiFi RSSI readings
might be decayed or jammed by the interference
signals. We therefore might obtain fewer samples to
estimate of the RSSI probability distribution in the
bin-based solution than the case without interference.
In this paper, we introduce the Weibull function to
proximate the RSSI probability distribution. The
Weibull function is a classical method for modeling

the signal strength of radio propagation (Sagias &
Karagiannidis, 2005). The Weibull probability density
function can be expressed as

f xð Þ ¼ k
λ

x−θ
λ

0
@

1
Ak−1

e

−
x−θ
λ

0
@

1
Ak

; x≥θ

0; x < θ

8>>>><
>>>>:

ð6Þ

The cumulate distribution function is defined as

F xð Þ ¼ 1−e−
x−θ
λð Þk ð7Þ

where x is the variable of the function, k is the shape
parameter, λ is the scale parameter, and θ is the shift
parameter. When θ = 0, this reduces to a 2-parameter
distribution.
The parameters of the Weibull function can be esti-

mated with a limited number of RSSI sample measure-
ments. The function parameters (λ, k, θ) can be
calculated with (Papoulis, 2002):

k ¼ δ= ln 2ð Þ; 1:5≤k≤2:5 ð8Þ

λ ¼
2� k þ 0:15ð Þ δ < 2

δ � k þ 0:15ð Þ 2≤δ≤3:5

3:5� k þ 0:15ð Þ δ > 3:5

8<
: ð9Þ

θ ¼ O−λ� Γ 1þ 1=kð Þ ð10Þ

O ¼ 1
n

Xn
i¼0

Oi ð11Þ

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼0

Oi−O
� �2s

ð12Þ

where O is the mean value of the RSSI observation set
Oi, δis the standard deviation. Γis the gamma function.
The term (k + 0.15) is an approximation of the expres-
sion 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ ‘1þ 2=kð Þ−Γ2 1þ 1=kð Þ

p
when 1.5 ≤ k ≤ 2.5.

Because the RSSI observations are rounded to an inte-
ger, for each possible RSSI observation in this study, the
distribution probability can be expressed as

P xð Þ ¼ F xþ 0:5ð Þ−F x−0:5ð Þ ð13Þ
The probability for each bin in the fingerprint database

can be generated as
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P AmBnjRið Þ ¼
Z xþw

x
f xð Þdx ¼ F xþ wð Þ−F xð Þ ð14Þ

where W is the width of the bin, x is the RSSI value at
the left edge of bin.

Fingerprinting-based WiFi localization
Based on the constructed fingerprint database using
the algorithms described in Section 3, the positioning
phase determines the current location based on the
obtained RSSI observations in real time. The Bayesian
theorem and the Histogram Maximum Likelihood
algorithm are used for position estimation.

Given the RSSI measurement vectorO
!¼ O1;O2…Okf g

from APs, the problem is to find the location l with the

conditional probability P ljO!
� �

being maximized. Using

the Bayesian theorem (Pei et al., 2010b)

argmaxl P ljO!
� �h i

¼ argmaxl
P O

!jl
� �

P lð Þ
P O

!� �
2
4

3
5

ð15Þ

where P O
!� �

is constant for all l, therefore, the Eq. (15)
can be reduced as

argmaxl P ljO!
� �h i

¼ argmaxl P O
!jl

� �
P lð Þ

h i
ð16Þ

We assume that the mobile device has equal prob-
ability to access each reference point, so P(l) can be
considered as constant in this case, Eq. (17) can be
simplified as

argmaxl P ljO!
� �h i

¼ argmaxl P O
!jl

� �h i
ð17Þ

Now it becomes a problem of finding the maximum
conditional probability of

P O
!jl

� �
¼

Yk
n¼1

P Onjlð Þ ð18Þ

where the conditional probability P(On| l) is derived
from the RSSI distribution pre-stored in the fingerprint
database.

Fig. 5 The test scene in FGI
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Results
To evaluate the performance of WiFi positioning in a
coexistence environment, we conducted a series of tests.

Test setups
All tests were performed in an office building with 16
WiFi APs and 13 Bluetooth APs existed. We set the
neighboring WiFi APs at channel 1, 6, 11 respectively to
avoid the interference from WiFi. And all the RSSs of an
AP are collected from the same channel set beforehand.
Figure 5 shows the test scene where the test mobile de-

vices include four smart phones and one Bluetooth mobile
terminal standing on a table. About three meters apart
from the mobile devices, there were one WiFi AP and
Bluetooth AP standing on another table. In order to elim-
inate the influence from the difference of mobile devices,
we selected four smart phones. Two of them were a same
model. We developed an application which was continu-
ously scanning nearby WiFi APs and logging the RSSI
observations on each smart phone. Meanwhile, another
application was developed in the firmware of the Bluetooth
mobile device to discover the Bluetooth APs in range.

Test scenarios
In order to investigate the following facts in the coexist-
ence environment:

� RSSI vs. miss-scanned rate,
� Bluetooth radio impacts on WiFi RSSI observations,
� Bluetooth radio impacts on WiFi positioning,
� The interference difference between AP side and

terminal side,
� Temporal impacts on WiFi RSSI observations,
� AFH vs. non-AFH,

we designed the following test scenarios

� Case 1: WiFi coexistence performance test with
Bluetooth AP on and Bluetooth mobile device on.

� Case 2: WiFi coexistence performance test with
Bluetooth AP on and Bluetooth mobile device off.

� Case 3: WiFi standalone performance test with
Bluetooth AP off and Bluetooth mobile device off.

� Case 4: WiFi coexistence performance test with
Bluetooth mobile device AFH capability on and off.

Test results
The tests lasted 4 days. The minimum test duration was
6 h. The RSSI observations collected from 16 WiFi APs,
one example as shown in Fig. 6, indicate that the miss-
scanned rate of WiFi RSSI observations increases with the
RSSI value decreasing. The value of zero here denotes that
the signal strength of a WiFi AP is so weak that a smart
phone is not able to discover. Miss-scanned rate shows
the fraction of scans where no APs were detected.
Figure 7 indicates that the miss-scanned rate of

WiFi RSSI observations is higher in the coexistence
environment than in the standalone environment.
Bluetooth APs have less impact on the WiFi miss-
scanned rate than the Bluetooth mobile device. The
miss-scanned rates reach 1 with WiFi AP 4, 5, 7, 8,
9, 12, 13, 14, 15, and 16, which means that these APs
are too weak to be detected by the mobile device. If
there is a Bluetooth mobile device nearby, the miss-
scanned rate recorded by a WiFi mobile device goes
higher, which is proved by AP 1, 2, 3, 6, 10, and 11.
In other word, the visibilities of all the WiFi APs in
range are decreased because the nearby Bluetooth
mobile device effected on the scanning procedure

Fig. 6 RSSI vs. miss-scanned rate
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executed on the WiFi mobile device. Bluetooth APs
give less interference on WiFi scanning if the
Bluetooth APs are far away from the WiFi mobile de-
vice. Otherwise the Bluetooth AP will impact on the
WiFi mobile device as the nearby mobile device does.
WiFi RSSI observations might vary by the time chan-

ging. Therefore, we tested on the same smart phones
in the same test environment with Bluetooth APs and
the Bluetooth mobile device power off. Test 1 lasted
36 h, and test 2 lasted 12 h. Since test 2 was executed
during the working hours, interference such as per-
sonal Bluetooth-enabled devices might be introduced.
As shown in Table 1, two tests have the similar mean
values. Test 2, however, has slightly higher standard
deviation and miss-scanned rate. In general, the per-
formances of two tests are very close. Table 2 shows a
certain difference of RSSI observations among the
different models of smart phones.

Considering that many Bluetooth devices implement
the Adaptive Frequency Hopping (AFH) mechanism
since Bluetooth V1.2 released, we also tested the per-
formance of WiFi RSSI sampling under the circum-
stances of both non-AFH and AFH mechanisms. We
enabled the Bluetooth AFH capability on a Bluetooth
mobile device and kept the communication with a
Bluetooth AP. As shown in Fig. 8, compared with the
non-AFH results, the WiFi RSSI sampling perform-
ance is improved in the AFH-enabled test case such
as AP 1 2, 3, and 6, where the RSSI values are higher
than −80 dBm. However, the AFH does not help if
the RSSI value is too low to detect. The AFH-enable
Bluetooth might decrease the WiFi throughout cap-
ability in the case that WiFi signals are very weak but

Fig. 7 WiFi standalone performance vs. coexistence performance (BT: Bluetooth)

Table 1 Day to day comparison of WiFi RSSI observations

WiFi AP ID 1 2 3

Mean (−dBm) Test 1 (36 h) 76.32 46.03 67.08

Test 2 (12 h) 74.81 45.33 68.47

Standard deviation
(dBm)

Test 1 (36 h) 0.54 0.52 0.65

Test 2 (12 h) 0.89 0.72 1.16

Miss-scanned rate Test 1 (36 h) 0.03 0.003 0.02

Test 2 (12 h) 0.07 0.006 0.03

Table 2 Devices comparison of WiFi RSSI observations

WiFi AP ID 1 2 3

Mean (−dBm) N8 79.58 45.00 67.66

N95 8G 78.82 37.07 66.27

6710-5 76.32 46.03 67.08

Standard deviation
(dBm)

N8 0.86 0.07 0.76

N95 8G 0.51 0.38 0.92

6710-5 0.54 0.52 0.65

Miss-scanned rate N8 0.004 0.0005 0.002

N95 8G 0.007 0.0003 0.003

6710-5 0.03 0.003 0.02

Pei et al. The Journal of Global Positioning Systems  (2017) 15:3 Page 8 of 12



still visible occasionally. We suggest that the WiFi finger-
prints only utilize the high RSSIs and avoid the unstable
RSSI measurements while WiFi signals are low.
An indoor test was carried out in a corridor on the third

floor at the Finnish Geodetic Institute as shown in Fig. 9.
Thirteen Bluetooth APs were deployed in the whole build-
ing, with 5 APs on the second floor and the others are on
the third floor. 13 of WiFi APs were deployed at the same
location with the Bluetooth APs. The other 3 WiFi APs
were located at the first floor. The Bluetooth mobile device
with a self-developed application is applied to control the
Bluetooth module to scan the APs nearby, collect the RSS
from the detected APs and send the measurements to the
laptop via a serial port. The sampling interval could be ad-
justed within 4–11.25 s according to the scanning priority
chosen. We set 4 s in the field tests in this paper. A Google
Nexus mobile phone was used as target device for WiFi
positioning tests. The phone was placed at 32 reference
points marked at the third floor.
Table 3 gives WiFi positioning results in standalone and

coexistence environments provided with occurrence-based
and Weibull-based fingerprint database. In the case of Blue-
tooth APs and the Bluetooth mobile device are all powered
on, WiFi positioning accuracy has the worst performance.
While in the case that all Bluetooth devices are powered
off, we achieve the best positioning accuracy. Weibull-
based fingerprint database gives a better performance than
occurrence-based fingerprint database in the coexistence
environment. WiFi positioning results significantly decrease
if a Bluetooth mobile device is working nearby, even though
the Weibull-based fingerprint database is applied.

Conclusion and discussion
The location-based service market using WiFi and
Bluetooth devices is growing rapidly. Meanwhile, the
number of WiFi and Bluetooth terminals, tags, and other
devices are increasing in a pervasive way. Those drive an
increasing demand for integration and coexistence of
these two technologies. This paper gives the preliminary
results of WiFi positioning in a WiFi and Bluetooth
coexistence environment.
The results indicate that stronger RSSI values usually

result in more stable RSSI observations. The closer a
Bluetooth device is, the lower accuracy of WiFi position-
ing might be caused. WiFi positioning suffers from the
interference in a coexistence environment. Weibull-
based fingerprint database has more robust performance
than occurrence-based fingerprint database. However,
the Weibull-based approach can only relieve the effects
of RSSI observation miss-scanned. Weibull-based
approach cannot solve the problem that the interfer-
ences distort the RSSI observations. RSSI observations
vary since the differences exist in WiFi devices.
Normalization is recommended if the WiFi module of a
positioning device is different from the one used for gen-
erating the fingerprint database. AFH mechanism de-
creases the Bluetooth interference to WiFi RSSI
scanning. However, AFH mechanism can only be de-
ployed in the Bluetooth connection state. Bluetooth de-
vices in an inquiring state still interfere with WiFi RSSI
scanning. Miss-scanned samples will lower the WiFi po-
sitioning performance if those samples are considered as
a feature of the RSSI fingerprinting. Furthermore, miss-

Fig. 8 Non-AFH vs. AFH
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Fig. 9 Floormap and the positions of the Bluetooth APs and reference points

Table 3 WiFi positioning performance (unit: m)

BTAP WiFi AP WiFi Phone BT Mobile Database Type Mean Err RMSE Max Err Min Err

OFF ON ON OFF Weibull 2.33 4.58 17.12 0

ON ON ON OFF Weibull 2.34 3.60 8.69 0

ON ON ON OFF Occurrence 2.45 4.26 14.52 0.01

ON ON ON ON Weibull 5.55 8.79 49.96 0.77

ON ON ON ON Occurrence 6.14 8.24 49.80 2.15
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scanned samples will extend the interval between two
successive observations, which decreases the perform-
ance of the positioning algorithms based on time series,
for instance, hidden Markov model.
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